期刊文献+

基于稀疏表征的单样本人脸识别 被引量:7

Sparse Representation-based Face Recognition for Single Sample
下载PDF
导出
摘要 提出2种基于稀疏表征SRC的单样本人脸识别方法。通过Shift或PCA重构的方法产生冗余样本,将生成的新样本作为训练样本,运用SRC进行识别分类。在ORL人脸库上的实验证明,在单样本情况下,2种方法分别比原SRC方法提高了5.56%和1.67%。与Shiftedimages+PCA、Shiftedimages+LDA、PCA重构人脸图像+LDA、PCA、LDA等方法做比较,实验表明,2个方法均具有良好的识别性能。 This paper proposes two methods based on sparse representation to deal with face recognition with one training image per person. In the proposed two methods, it generates the multiple images by shifting the original image or reconstructing the original image using Principle Component Analysis(PCA) method, and regards new images as training samples, and then applies Sparse Representation-based Classification(SRC) on new training samples set. Experiments on the well-known ORL database show that the proposed two methods are about 5.56% and 1.67%, more accurate than original SRC method when considering in the context of single sample face recognition problem. In addition, extensive experimentation reported in the paper suggests that the proposed two methods achieve lower error recognition rate than Shifted images +PCA, Shifted images +LDA, PCA reconstructed images +LDA, PCA, LDA.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第21期175-177,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60805001) 浙江省自然科学基金资助项目(Y1090579)
关键词 人脸识别 单样本 主成分分析 基于稀疏表征的分类 face recognition single sample Principle Component Analysis(PCA) Sparse Represerrtation-based Classification(SRC)
  • 相关文献

参考文献8

  • 1胡晓,俞王新,余群,姚菁.基于行列特征复融合的人脸识别[J].计算机工程,2010,36(11):176-177. 被引量:4
  • 2Wang Jie,Plataniotis K N,Lu Juwei,et al.On Solving the Face Recognition Problem with One Training Sample per Subject[J].Pattern Recognition.2006,39(9):1746-1762.
  • 3Tan Xiaoyang,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image per Person: A Survey[J].Pattern Recognition.2006,39(9):1725-1745.
  • 4Wright J,Ma Yi,Mairal J,et al.Sparse Representation for Computer Vision and Pattern Recognition[J].Proceedings of the IEEE.2010,98(6):1031-1044.
  • 5Candès E J,Tao T.Reflections on Compressed Sensing[J].IEEE Information Theory Society Newslette,2008,58(4): 20-23.
  • 6Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory.2006,52(4):1289-1306.
  • 7Liu Jun,Chen Songcan,Zhou Zhihua,et al.Single Image Subspace for Face Recognition[C]//Proc.of the 3rd International Conference on Analysis and Modeling of Faces and Gestures.Rio de Janeiro,Brazil: Springer-Verlag,2007: 205-219.
  • 8Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2009,31(2):210-227.

二级参考文献5

  • 1Zheng Weishi, Lai J H, Li S Z. 1D-LDA vs. 2D-LDA: When Is Vector-based Linear Discriminant Analysis Better Than Matrix- based? [J]. Pattern Recognition, 2008, 41 (7): 2156-2172.
  • 2Liang Zhizheng, Li Youfu, Shi Pengfei. Note on Two-dimensiona Linear Discriminant Analysis[J]. Pattern Recognition Lett., 2008 29(16): 2122-2128.
  • 3Noushath S, Hemantha Kumar G, Shivakumara P. (2D)2LDA: An Efficient Approach for Face Recognition[J]. Pattern Recognition, 2006, 39(7): 1396-1400.
  • 4Yu Wangxin, Wang Zhizhong, Chen Weiting. A New Framework to Combine Vertical and Horizontal Information for Face Recognition[J]. Neurocomputing, 2009, 72(4-6): 1084-1091.
  • 5李进,罗义平,刘海华,高智勇.基于改进零空间法的人脸识别研究[J].计算机工程,2009,35(9):198-200. 被引量:7

共引文献3

同被引文献60

  • 1段文敏,向长喜,孙洪淋.基于WebService的高校毕业设计管理信息系统的设计[J].企业技术开发,2006,25(9):19-21. 被引量:6
  • 2尹洪涛,付平,孟升卫.基于局部特征融合的人脸识别[J].测试技术学报,2006,20(6):539-542. 被引量:5
  • 3Mahdieh S B, Saeed B S. Non-linear Metric Learning Using Pairwise Similarity and Dissimilarity Constraints and the Geometrical Structure of Data[J]. Pattern Recognition, 2010, 43(8): 2982-2992.
  • 4Xiang Shiming, Nie Feiping, Zhang Changshui. Learning a Ma- halanobis Distance Metric for Data Clustering and Classi- fication[J]. Pattern Recognition, 2008, 41(12): 3600-3612.
  • 5Qiao Lishan, Chen Songcan, Tan Xiaoyang. Sparsity Preserving Projections with Application to Face Recognition[J]. Pattern Recognition, 2010, 43(1): 331-341.
  • 6WUHLI U,TOMLINSON M,ZIMMEMANN O,et al. IBM red book:Web Services Wizardry with WebSphere Stadio Appli- cation Developer[ EB/OL ]. 2002 -05. http ://www. redbooks, ibm. com/red -books. nsf/redbooks/.
  • 7He Xiaofei,Niyogi P.Locality Preserving Projections[C]// Thrun S,Saul L K,Sch'olkopf B.Advances in Neural Information Processing Systems.Vancouver,Canada:[s.n.],2003:327-334.
  • 8He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face Recognition Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (3):328-340.
  • 9Roweis S T,Sail L K.Nonlinear Dimensionality by Locally Linear Embedding[J].Science,2000,290 (5500):2323-2326.
  • 10Saul L K,Roweis S T.Think Globally,Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J].Journal of Machine Learning Research,2003,4 (1):119-155.

引证文献7

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部