期刊文献+

基于Feature Forest的图像检索 被引量:2

Image Retrieval Based on Feature Forest
下载PDF
导出
摘要 基于语义树(Vocabulary tree)的图像检索方法是效果最好的方法之一,但目前存在的基于Vocabulary tree的方法都是建立在一种特征上的,当图像库比较大时很难达到理想的效果。基于此,提出一种多特征检索结果的融合框架Feature forest,根据各种特征的检索结果好坏动态确定对应特征树的权值。实验结果证明,相对于单种特征的特征树,该方法有一定的优越性。 Vocabulary tree-based method is one of the most effective image retrieval methods. However, for existing Vocabulary tree methods, the retrieval precision in large scale image database is not acceptable especially for image datasets with high variations. This paper proposes a novel tree fusion framework Feature forest, utilizing and dynamically fusing different kind of local visual descriptors to achieve a better retrieval performance. Experimental results show the effectiveness of the approach compared with single Vocabulary tree-based methods on different databases.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第21期231-233,共3页 Computer Engineering
关键词 语义树 特征融合 FEATURE forest框架 SURF特征 HOG特征 Vocabulary tree feature fusion Feature forest framework SURF feature HOG feature
  • 相关文献

参考文献5

  • 1Nister D, Stewenius H. Scalable Recognition with a Vocabulary Tree[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: [s. n.]. 2006: 2161-2168.
  • 2Frauendorfer F, Wu Changchang, Frahm J M, et al. Visual Word Based Location Recognition in 3D Models Using Distance Augmented Weighting[C]//Proc. of 3D Data Processing Visualization and Transmission. Paris, France:[s. n.], 2008.
  • 3Leibe B, Schiele B. Analyzing Contour and Appearance Based Methods for Object Categorization[C]//Proc. of IEEE Computer Vision and Pattern Recognition. Madison, Wisconsin, USA: [s. n.], 2003.
  • 4Sivic J, Zisserrnan A. Video Google: A Text Retrieval Approach to Object Matching in Videos[C]//Proc. of International Conference on Computer Vision. Madison, Wisconsin, USA: [s. n.], 2003.
  • 5Wilkins P, Adamek T. RECVid 2007 Experiments at Dublin City University[C]//Proc. of TRECVid'07. Gaithersburg, Maryland, USA: [s. n.], 2007.

同被引文献25

  • 1Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//Proc. of CVP'05. Washington D. C., USA: IEEE Press, 2005: 886-893.
  • 2Deniz O, Bueno G, Torte L. Face Recognition Using Histograms of Oriented Gradients[J]. Pattern Recognition Letters, 32(12): 1598-1603.
  • 3Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-98.
  • 4Bicego M, Lagorio A, Grosso E, et al. On the Use of Sift Features for Face Authentication[C]//Proc. of Conf on Computer Vision and Pattern Recognition. Los Alamitos, USA: [s. n.], 2006.
  • 5谭恒昆基于融合全局和局部HOG特征的人脸识别方法[D].广州:中山大学,2011.
  • 6Phillips P J, Syed H M, Rizvi A, et al. The FERET Evaluation Methodology for Face-recognition Algorithms[J]. IEEE Trans. on Pattern Analysis and Machine InteLligence, 2000, 22(10): 1090- 1104.
  • 7Su Yu, Shah Shiguang, Chen Xilin, et al. Hierarchical Ensemble of Global and Local Classifiers for Face Recognition[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1885-1896.
  • 8Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Lowe D.Distinctive image features from scale-invariant keypoints[J].Int.Journal of Computer Vision,2004,60(2):91-110.
  • 10Bicego M,Lagorio A,Grosso E,et al.On the Use of SIFT Features for Face Authentication[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition Workshop.New York,USA,2006:35-41.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部