期刊文献+

基于脑电特征的多模式想象动作识别 被引量:13

Multi-Pattern Motor Imagery Recognition Based on EEG Features
下载PDF
导出
摘要 对不同部位肢体想象动作诱发的脑电特征进行辨识,并提取出对应的思维信息,这是实现脑-机交互的经典方法之一,传统的左、右手双想象动作诱发模式下信息转化效率较低,引入多个肢体部位想象动作的多模式转化方法可望改善这一缺点.采用二维时频分析结合Fisher分析的方法,从典型受试者的多模式想象动作脑电信号中提取出有利于分类识别的事件相关去同步化和同步化特征信息,再使用支持向量机建立双层分类器对多模式想象动作进行分类识别.本方法对于4种不同肢体部位的识别可以达到较高的正确率(85.71%).结果表明,多模式想象动作的诱发脑电特征信息具有明显的空间特异性,可以用于脑-机交互思维任务的识别和提取,值得进一步研究. Motor imagery is a classical method in brain-computer interaction, in which EEG features evoked by imaginary body movements are recognized and thought information is extracted. However, the traditional dual pattern with left/right hand has low efficiency of information transformation. In this paper we introduce a multi-pattern method of transformation to overcome this disadvantage. The method of two-dimensional time-frequency analysis combined with Fisher analysis was introduced to extract feature information of event related desynchronization/synchronization from multi-pattern imaginary movement evoked EEG signals of typical subjects. Then the support vector machine was used to establish double layers classifiers to identify and classify multi-pattern motor imagery. This method achieved an accuracy of 85.71% on recognition of imaginary movements of four different body parts. The result shows that the evoked EEG feature information of multi-pattern imaginary movements has obvious space specificity which can be used to recognize and extract thought information in brain-computer interaction. Therefore, it is worthy of further investigation.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第10期895-900,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(30970875 90920015 60501005) 国家高技术研究发展计划(863计划)资助项目(2007AA04Z236) 天津市科技支撑计划重点基金资助项目(07ZCKFSF01300) 国际科技合作专项基金资助项目(08ZCGHHZ00300)
关键词 脑-机接口 多模式想象动作 事件相关去同步 Fisher分析 支持向量机 brain-computer interface multi-pattern motor imagery event related desynchronization Fisher analysis support vector machine
  • 相关文献

参考文献11

  • 1Wolpaw J R,Birbaumer N,Heetderks W J,et al.Braincomputer interface technology:A review of the first international meeting[J].IEEE Trans Rehabil Eng,2000,8(2):222-225.
  • 2Wolpaw J R,Birbaumer N,McFarland D J,et al.Braincomputer interfaces for communication and control[J].Clinical Neurophysology,2002,113:94-109.
  • 3万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 4Vaughan T M.Brain-computer interface technology:A review of the second international meeting[J].IEEE Trans Neural Syst Rehabil Eng,2003,11(2):94-109.
  • 5庄平.脑电事件相关去同步化和同步化活动与运动相关性作业[J].中国临床康复,2004,8(1):152-154. 被引量:25
  • 6Pfurtscheller G,Lopes da Silva F H.Event-related EEG/MEG synchronization and desychronization:Basic principles[J].Clinical Neurophysiology,1999,110(11):1842-1857.
  • 7Neuper C,Müller G R,Kübler A,et al.Clinical application of an EEG-based brain-computer interface:A ease study in a patient with severe motor impairment[J].Clinical Neurophysiology,2003,114:399-409.
  • 8Krusienski D J,Wolpaw J R,Millán José del R.The BCI competition Ⅲ:Validating aternative approaches to actual BCI problems[J].IEEE Transactions on Neural Systems and Rehabilitation Engineeing,2006,14(2):153-158.
  • 9殷晓中,于盛林.信号的时频分析理论与应用评述[J].现代电子技术,2006,29(21):118-120. 被引量:23
  • 10杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97

二级参考文献55

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2张华煜,邢丽萍.基于核函数的支持向量机分类方法[J].电脑开发与应用,2005,18(7):26-27. 被引量:3
  • 3[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 4[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 5[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 6[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 7[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 8[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 9[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 10[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983

共引文献166

同被引文献80

引证文献13

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部