期刊文献+

利用无参数统计特征进行旋转不变纹理图像渐进检索 被引量:2

A Rotation-invariant Texture Retrieval Algorithm Based on Parameterless Statistical Features
原文传递
导出
摘要 分析了Radon变换和Log-polar变换在消除旋转位移时对频谱的影响,探讨了NSCT变换和小波变换在不同检索参数下的平均检索性能,在此基础上构造出多尺度多方向纹理变换谱和旋转不变特征矢量,并提出了一种基于无参数统计特征的旋转不变纹理图像两级渐进检索算法。通过VisTex标准纹理图像库的检索实验证明,与传统检索算法相比,本文提出的算法既可获取纹理主方向,同时又能表征纹理细节信息,有效地提高了旋转不变纹理图像检索的查准率和检索效率。 We analyze the spectrum influence between Radon transform and Log-polar transform when rotation effect is eliminated.The average retrieval performance of wavelet and NSCT with different retrieval parameters is also studied.Based on which,we design a multi-scale and multi-orientation texture transform spectrum,as well as rotation-invariant feature vector and its measurement criteria.Then a new two-level rotation-invariant texture retrieval algorithm based on no-parameter statistic features is proposed.The experimental results on Brodatz image database show that our algorithm is appropriate for main orientation capturing and detail information description.The combination of this two-level progressive retrieval strategy and multi-scale analysis method can effectively improve retrieval efficiency,compared with traditional algorithms,and ensure a high precision as well.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第11期1279-1282,共4页 Geomatics and Information Science of Wuhan University
基金 国家973重点基础研究发展计划资助项目(2010CB731800) 国家863计划资助项目(2009AA121404) 国家自然科学基金资助项目(40801165 10978003) 武汉大学测绘遥感信息工程国家重点实验室专项科研经费资助项目 武汉大学优秀博士学位论文培育基金资助项目 武汉大学2008年博士研究生(含1+4)自主科研资助项目
关键词 NSCT Log-polar变换 无参数统计特征 旋转不变纹理检索 NSCT Log-polar transform no-parameter statistic features rotation-invariant texture retrieval
  • 相关文献

参考文献7

  • 1Montoya-Zegarra J A,Papa J P, Leite N J, et al. Learning How to Extract Rotation invariant and Scale-invariant Features from Texture Images[J]. Eurasip Journal on Advances in Signal Processing, 2008:15.
  • 2Kourosh J K, Harold S Z. Rotation-invariant Multiresolution Texture Analysis Using Radon and Wavelet Transforms[J]. IEEE Transactions on Image Processing, 2005, 14(6): 788-795.
  • 3Chi-Man P. Rotation and Scale Invariant Wavelet Feature for Content-based Texture Image Retrieval [J].Journal of the American Society For Information Science and Technology, 2003, 54(1):68-80.
  • 4Franci L, Stanislav K. Rotation-invariant Texture Classification [J]. Pattern Recognition Letters, 2003,24:1 151-1 161.
  • 5程起敏,杨崇俊,邵振峰.基于多进制小波变换的渐进式纹理图像检索[J].武汉大学学报(信息科学版),2005,30(6):521-524. 被引量:10
  • 6Liu Xiuwen, Wang Deliang. Texture Classification Using Spectral Histograms[J]. IEEE Transactions on Image Processing, 2003 ,12:661-670.
  • 7曾志明,李峰,傅琨,丁赤飚.一种大尺寸遥感图像基于内容检索的纹理特征提取算法[J].武汉大学学报(信息科学版),2005,30(12):1080-1083. 被引量:5

二级参考文献12

  • 1黄桂兰,郑肇葆.空间灰度相关在影像纹理分类中的应用及分析[J].武汉测绘科技大学学报,1995,20(4):301-304. 被引量:8
  • 2Kokare M,Chatterji B N,Biswas P K.M-band Wavelet Based Texture Features for Content Based Image Retrieval. Electronics and Electrical Communication Engineering Department, 2002.
  • 3Uller H M, Uller W M, Squire D M, et al.Performance Evaluation in Content-based Image Retrieval: Overview and Proposals. Pattern Recognition Letters,2001,22(5):593-601.
  • 4Chitre Y, Dhawan A P. M-Band Wavelet Discrimination of Natural Textures.Pattern Recognition, 1999,32(5) :773-789.
  • 5Acharyya M, Kundu M K. An Adaptive Approach to Unsupervised Texture Segmentation Using M-Band Wavelet Transform. Signal Processing, 2001,81(7):1337-1356.
  • 6Manjunath B S,Ma W Y.Texture Features for Browsing and Retrieval of Image Data.IEEE PAMI,1996,18(8):837~842
  • 7Hu M K.Visual Pattern Recognition by Moment Invariant.IRE Trans Information Theory,1962,8:179~187
  • 8Haralick R M.Statistical and Structural Approaches to Texture.Proc.IEEE 1979,67(5):786~904
  • 9朱长青,王倩,杨晓梅.基于多进制小波的SPOT全色影像和多光谱遥感影像融合[J].测绘学报,2000,29(2):132-136. 被引量:43
  • 10王智均,李德仁,李清泉.多进制小波理论在SPOT和TM影像融合中的应用[J].武汉大学学报(信息科学版),2001,26(1):24-28. 被引量:12

共引文献13

同被引文献31

  • 1李文峰,徐科,杨朝霖,高阳,周鹏.中厚板表面缺陷在线检测系统的分类器设计[J].钢铁,2006,41(4):47-50. 被引量:5
  • 2宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 3Krishnamoorthi R,Sathiya Devi S. A multi-resolution ap-proach for rotation-invariant texture image retrieval withorthogonal polynomials model[J]. Journal of Visual Com-munication and Image Representation, 2012,23 : 18-30.
  • 4Kourosh J K,Hamid S Z. Rotation-invariant multiresolutiontexture analysis using Radon and wavelet transforms[J].IEEE Transactions on Image Processing, 2005,14 ( 6 ):783-795.
  • 5Alfonso Estudillo-romero. Rotation-invariant texture featu-res from the steered Hermite transform [J]. Pattern Rec-ognition Letters, 2011,32:2]50-2162.
  • 6Han J,Ma K. Rotation invariant and scale invariant Gaborfeatures for texture image retrieval[J]. Image and VisionComputing,2007,25(9) :1474-1481.
  • 7Muneeswaran K,Ganesan L. Texture classification withcombined rotation and scale invariant wavelet features[J]. Pattern Recognition,2005,38(10) :1495-1506.
  • 8Zhang D,Islam M M,Lu G,et at. Rotation invariant curve-let features for region based image retrieval[J]. Interna-tional Journal of Computer Vision,2012,98(2) : 187-201 .
  • 9Javier A. Montaya-Zegarra, Joao Paulo Papa,et al. Lea-rning how to extract rotation-invariant and scale-invariantfeatures from texture images[J]. EURASIP Journal on Ad-vances in Signal Processing,2008,(3) : 1-15.
  • 10Zachary J M. An information theoretic approach to con-tent based image retrieval[D ]. Louisiana: Louisiana StateUniversity, 2000 .45-62.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部