期刊文献+

IKONOS图像融合中自动拟合低分辨率全色图像的方法 被引量:3

An Automatic Method of Simulating Low Resolution Panchromatic Image in IKONOS Image Fusion
原文传递
导出
摘要 提出了一种IKONOS图像融合中自动拟合低分辨率全色图像的方法。首先使用支持向量机将全色图像的像元自动分为高、低频信息像元;然后采用改进的Bucket技术选择一定数量、均匀分布的低频信息像元点作为观测值;最后通过线性回归方法求得拟合系数,并构造低分辨率全色图像。两组IKONOS全色与多光谱图像的实验结果表明,本文方法能自动选择均匀分布的像元点,并求得拟合系数,基于拟合低分辨率全色图像的Gram-Schmidt融合方法的质量也优于传统的Gram-Schmidt融合方法。 An automatic method of simulating low resolution panchromatic image in IKONOS image fusion was described.Firstly,support vector machine(SVM) was used to separate pixels containing low frequency information from those containing high frequency information,which was not suitable to be included in regression coefficients estimating.Secondly,improved Bucket technique was adopted to generate a subset of observations evenly distributed.Finally,low resolution panchromatic image was simulated with parameters achieved by linear regression,and integrated into the Gram-Schmidt spectral sharpening method.Validating experiments were carried out on two datasets of IKONOS panchromatic and multispectral images,visual and quantitative quality judgments show that the proposed method can select evenly distributed pixel observations with low frequency information automatically,which proves its high efficiency,and that the resultant images have less spectral distortion than traditional Gram-Schmidt method does.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第11期1283-1287,共5页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2007AA12Z181-2 2006AA120107)
关键词 支持向量机 Bucket技术 拟合 低分辨率全色图像 融合 support vector machine Bucket technique simulation low resolution panchromatic image image fusion
  • 相关文献

参考文献14

  • 1Alparone L, Aiazzi B,Baronti S, et al. Spectral Information Extraction from Very-high Resolution Images Through Multiresolution Fusion[J]. SPIE-the International Society for Optical Engineering, 2004,5 573:1-8.
  • 2Dou W, Chen Y, Li X, et al. A General Framework for Component Substitution Image Fusion: An Implementation Using the Fast Image Fusion Method[J].Computers & Geosciences, 2007, 33:219- 228.
  • 3Zhang Y. A New Merging Method and Its Spectral and Spatial Effects [J].Int J Remote Sensing, 1999, 20(10):2 003-2 014.
  • 4Kalpoma K A, Udoh J. Image Fusion Processing for IKONOSI-m Color Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10) : 3 075- 3 086.
  • 5Audcana M G, Otazu X, Fors O, et al. A Low Computational-Cost Method to Fuse IKONOS Images Using the Spectral Response Function of Its Sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6) :1 683-1 691.
  • 6Aiazzi B, Baronti S, Selva M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS+Pan Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3 230 3 239.
  • 7李平湘,王智均.高空间分辨率影像和多光谱影像融合的研究[J].武汉大学学报(信息科学版),2003,28(1):14-17. 被引量:17
  • 8李均力,贾永红.基于分辨率退化模型的全色和多光谱遥感影像融合方法[J].武汉大学学报(信息科学版),2004,29(4):302-306. 被引量:15
  • 9Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines [OL]. http://www, csie. ntu. edu. tw/-cjlin/libsvm, 2001.
  • 10Tao C V,Hu Y. A Comprehensive Study on the Rational Function Model for Photogrammetric Processing[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(12): 1 347-1 357.

二级参考文献4

共引文献29

同被引文献53

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部