期刊文献+

联合循环电站改造为整体煤气化联合循环的粗煤气冷却 被引量:3

Options of Cooling Raw Syngas when Retrofitting NGCC to IGCC
下载PDF
导出
摘要 研究了将PG9351FA燃气-蒸汽联合循环电站改造为整体煤气化联合循环(IGCC)时的粗煤气冷却方式,以及煤气冷却过程副产蒸汽的利用方式.改造的IGCC电站以输运床气化炉为气源,考虑了燃气轮机改烧中低热值煤气后的喘振裕度和出力限制,以及NOx排放的限制.根据粗煤气冷却方式及副产蒸汽利用方式的不同,构建并比较了4种改造方案.研究表明:通过将透平初温降低100℃,可保证燃气轮机燃烧热值为6.5MJ/m3的煤气,同时可保证压气机喘振裕度的减小量不超过10%;采用全热回收方式冷却粗煤气,且由饱和蒸汽轮机来消纳粗煤气冷却过程中副产蒸汽的改造方案的供电效率最高,为42.3%. The options of cooling raw syngas when retrofitting PG9351FA natural gas combined cycle (NGCC) to an integrated gasification combined cycle (IGCC) power plant were discussed. The ways of adopting the by-product steam resulting from raw syngas cooling process were analyzed. A transport gasifier was applied to the retrofitted power plant as the source of syngas. The surge margin, maximum power output, and NOx emission constraint were considered in modeling the off-design behavior of PG9351FA gas turbine. Four retrofitting cases were discussed on the basis of options of cooling raw syngas and ways of adopting by-product steam. The results show that the gas turbine could consume the syngas with a lower heating value of 6.5 MJ/m3 while the compressor surge margin could decrease by only less than 10% when T3 decreased by 100 ℃. Moreover, applying the total heat recovery method to cool syngas and a saturated steam turbine to adopt the by -product steam could lead to a net efficiency of 42. 3%, the highest in four retro- fitting cases.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第11期71-76,102,共7页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA05A109)
关键词 整体煤气化联合循环 改造 粗煤气冷却 输运床气化炉 IGCC retrofit cooling raw syngas transport gasifier
  • 相关文献

参考文献7

  • 1PINKSTON T, MORTON F. Orlando gasification project: demonstration of a 285 MW coal-based transport gasifier [C]//Proceedings of the 31st International Technical Conference on Coal Utilization and Fuel Systems. Florida, USA: Department of Energy Coal Technology Association of the United States, 2006..261-270.
  • 2GUTIERREZ J P, SULLIVAN T B, FELLER G J. Turning NGCC into IGCC: cycle retrofitting issues [C/CD]// Proceedings of the ASME Turbo Expo. New York, USA: ASME, 2006 : GT2006-88112.
  • 3SHELTON W, LYONS J. Transport gasifier IGCC base cases, PED-IGCC-98-006 [R]. Morgantown, WV, USA: National Energy Technology Library, 2000.
  • 4MAURSTAD O. An overview of coal based integrated gasification combined cycle (IGCC) technology, LFEE 2005-002 [R]. Cambridge, MA, USA: Massachusetts Institute of Technology. Laboratory for Energy and the Environment, 2005.
  • 5ORBAY R C, GENRUP M, ERIKSSON P, et al. Off-design performance investigation of a low calorific value gas fired generic type single-shaft gas turbine[C/ CD] // Proceedings of the ASME Turbo Expo. New York, USA; ASME, 2007: GT2007-27936.
  • 6BRDAR R D, JONES R M. GE IGCC technoIogy and experience with advanced gas turbines, GER-4207 [R]. Schenectady,USA: GE Power Systems, 2000.
  • 7MARTELLI E, KREUTZ T, CONSONNI S. Comparison of coal IGCC with and without COx capture and storage: shell gasification with standard vs. partial water quench [J]. Energy Procedia, 2009, 1(1): 607-614.

同被引文献39

  • 1蔡乐,杜鑫,王松涛,周逊.某重型燃气轮机压气机顶切方法的数值模拟[J].中国电机工程学报,2012,32(32):95-100. 被引量:4
  • 2Zwebek AI,Pilidis P. Degradation effects on combinedcycle power plant performance part 3: gas and steamturbine degradation effects[C]//Proceedings of the ASMETurbo Expo.. Amsterdam,Netherlands: ASME, 2002:763-770.
  • 3Mund F C,Pilidis P. Gas turbine compressor washing:historical developments, trends and main designparameters for online systemsfJ]. Journal of Engineeringfor Gas Turbines and Power, 2006,128(2): 344-353.
  • 4Litinetsky A, litinetski V,Hain Y,et al. Parametric studyof on-line compressor washing systems using CFDanalysis[C]//Proceedings of the ASME TurboExpo.. Berlin, Germany: ASME, 2008: 903-912.
  • 5Rao P N S,Naikan V N A. An optimal maintenance policyfor compressor of a gas turbine power plant[J]. Journal ofEngineering for Gas Turbines and Power, 2008,130(2):0218011-0218015.
  • 6BasendwahAA,Pilidis P? LiYG. Turbine off-line waterwash optimization approach for power generation[C]//Proceedings of the ASME Turbo Expo.. Barcelona,Spain:ASME, 2006: 65-76.
  • 7Fabbri A,Traverso A, Cafaro S. Compressor performancerecovery systems: a new thermoeconomic approachfC]//Proceedings of the ASME Turbo Expo.. Vancouver,Canada: ASME, 2011: 567-577.
  • 8Fabbri A,Traverso A,Cafaro S. Compressor performancerecovery system: which solution and when[J]. Proceedingsof the Institution of Mechanical Engineers Part A: Journalof Power and Energy, 2011,225(4): 457-466.
  • 9Schneider E,Demircioglu S,Franco S, et al. Analysis ofcompressor on-line washing to optimize gas turbine powerplant performance[C]// Proceedings of the ASME TurboExpo.. Orlando,FL,United States: ASME, 2009:591-599.
  • 10Mezheritsky AD, Sudarev A V. Mechanism of fouling andthe cleaning technique in application to flow parts of thepower generation plant compressors[C]//Intemational GasTurbine and Aeroengine Congress and Exposition.Brussels, Belg: ASME, 1990: 90-103.

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部