期刊文献+

一种基于SVDD的图像自动标注方法 被引量:2

AN SVDD-BASED AUTOMATIC IMAGE ANNOTATION METHOD
下载PDF
导出
摘要 将图像自动标注看作是一个多类分类问题,目前的方法大多将其分解为两类分类问题,随着训练数据和类别的增多,这样处理时间开销将急剧增加。针对该问题,提出了一种基于支持向量数据描述SVDD(Support Vector Data Description)的标注算法,能够同时降低训练和标注过程的时间复杂度,具有易于扩充的优势。该算法利用SVDD获得包含单类数据的最小超球,通过超球边界对未标注图像进行分类并实现语义标注。在Corel数据集上的实验结果表明,该方法能显著提高图像标注的效率,并具有较好的标注性能。 In practice,automatic image annotation is deemed as the classification of multiple classes issue.At present the way commonly used is to decompose it into binary class classification problem.The time overhead of this approach increases sharply along with the growth of training data and classes.Aiming at this problem,this paper proposes an SVDD-based annotation method,it can reduce time complexity of both training and annotation process and has the advantage of facile expanding.It uses SVDD to obtain a minimum bounding hyper-sphere containing one-class data,and classifies unlabeled image via the boundary of hyper-sphere and annotates the semantics accordingly.Experimental results on Corel dataset show that the proposed method can greatly speed-up the annotation efficiency,while maintaining a competitive annotation performance.
出处 《计算机应用与软件》 CSCD 2010年第10期1-4,共4页 Computer Applications and Software
基金 国家自然科学基金(60903091) 上海市科委科技攻关项目(08511500902 08511501903)
关键词 基于内容的图像检索 图像自动标注 支持向量数据描述 支持向量机 MPEG-7 Content-based image retrieval(CBIR) Automatic image annotation Support vector data description(SVDD) Support vector machine(SVM) MPEG-7
  • 相关文献

参考文献9

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1995.
  • 2Tax D M,Duin R P.Support Vector Data Description[J].Machine Learning,2004,54:45-66.
  • 3李瑜,郑敏娟,程国建.基于支持向量数据描述的分类方法研究[J].计算机工程,2009,35(1):235-236. 被引量:10
  • 4张贝贝,何中市.基于支持向量数据描述算法的SVM多分类新方法[J].计算机应用研究,2007,24(11):46-48. 被引量:4
  • 5Chang S F,Sikora T,Puri A.Overview of the MPEG-7 Standard.IEEE trans.on Circuits and Systems for Video Technology,2001,11:688-695.
  • 6Spyrou E,Borgne H L,O'Connor N,et al.Fusing MPEG-7 Visual Descriptors for Image Classification[C].International Conference on Artifical Neural Networks,2005.
  • 7Chang C C,Lin C J.LIBSVM:A library for Support Vector Machines,2001.http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 8Fan R E,Chen P H,Lin C J.Working Set Selection Using Second Order Information for Training Support Vector Machine[J].Journal of Machine Learning Research,2005,6:1889-1918.
  • 9Wang J Z,Li J,Wiederhold G.SIMPLIcity:Semantics-sensitive Integrated Matching for Picture Libraries[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2001,23(9):947-963.

二级参考文献10

  • 1Laskov P. Feasible Direction Decomposition Algorithms for Training Support Vector Machine[J]. Machine Learning, 2002, 46(1-3): 315-349.
  • 2Parpinelli R S, Lopes H S, Freitas A A. Data Mining with an Ant Colony Optimization Algorithm[J]. 1EEE Trans. on Evolutionary Computing, 2002, 6(4): 321-332.
  • 3VAPNIK V N.The nature of statistical learning theory[M].New York:Wiley,1998.
  • 4HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Trans on Neural Networks,2002,13(2):415-425.
  • 5TAX D,DUIN R.Data domain description using support vectors[C]//Proc of the European Symposium on Artifical Neural Networks.1999:251-256.
  • 6TAX D M J,DUIN R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11-13):1191-1199.
  • 7BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 8BLAKE C L,MERZ C J.UCI machine learning repository[EB/OL].[2006-05-01].http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • 9衣治安,吕曼.基于多分类支持向量机的入侵检测方法[J].计算机工程,2007,33(15):167-169. 被引量:7
  • 10宋杰.一种新的无参数支持向量机分类器[J].计算机工程,2007,33(23):213-214. 被引量:2

共引文献12

同被引文献35

  • 1赵英刚,何钦铭,陈奇.基于灰色信息的支持向量域分类算法[J].华中科技大学学报(自然科学版),2005,33(z1):282-284. 被引量:1
  • 2潘明清,周晓军,吴瑞明,雷良育.基于主元分析的支持向量数据描述机械故障诊断[J].传感技术学报,2006,19(1):128-131. 被引量:18
  • 3Sunaga T. Theory of an interval algebra and its application to numerical analysis, RAAG Memoirs, 1958, (2): 29-46.
  • 4Tax D, Duin R. Support vector domain description. Pattern Recognition Letters, 1999, 20(11213): 1191-1199.
  • 5Tax D, Duin R. Data domain description using support vectors. Proceedings of the European Symposium on Artificial Neural Networks, 1999.
  • 6Tax D, Duin R. Outlier detection using classifier instability. Advances in Pattern Recognition, Lecture notes in Computer Science, 1998, 1451: 593-601.
  • 7Boser B E, Guyon I M, Vapink V A. Training algorithm for optimal margin classifiers. Proceed- ings of the fifth Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, United States, 1992.
  • 8Aronszajin N. Theory of reproducing kernels. Transactions of the American Mathematical Society, 1950, 68: 337-404.
  • 9Aizerman M A, et al. Theoretical foundations of the potential function method in pattern recog- nition learning. Journal of Machine Learning Research, 2000: 113-141.
  • 10Tran L, Duckstein L. Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy sets and Systems, 2002, 130: 331-341.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部