期刊文献+

基于FP-Tree快速挖掘频繁项集 被引量:2

FAST MINING OF FREQUENT ITEMSETS BASED ON FP-TREE
下载PDF
导出
摘要 发现频繁项集是关联规则挖掘中最基本、最重要的问题。目前已有两类频繁项集挖掘算法,然而由于其内在的复杂性,这一问题并未完全解决。提出了一种基于FP-Tree的频繁项集挖掘算法,该算法通过计算FP-Tree中非叶子节点的频繁子孙集和频繁前缀,组合生成频繁项集,无需递归构造每个频繁项的条件模式树,节约了时间和内存空间,算法性能在一定程度上得到了提高。 Discovery of frequent itemsets is the most fundamental and important issue in mining association rules.Although there are two types of mining algorithms to solve this problem currently,it has not been fully addressed yet due to the inherent computational complexity.In this paper,we present an algorithm of frequent itemsets mining based on FP-Tree.The algorithm combinatorially generates frequent itemsets through calculating the frequent-posterity and frequent-prefix of non-leaf nodes of the FP-Tree.The recursive construction of conditional model FP-Tree of each frequent item is not necessary,which saves the time consumed and the memory space,so the performance of the algorithm can be improved to some degree.
出处 《计算机应用与软件》 CSCD 2010年第10期36-37,130,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60873234)
关键词 频繁项集 FP-TREE 频繁子孙集 频繁前缀 关联规则 Frequent itemsets FP-Tree Frequent-posterity Frequent-prefix Association rules
  • 相关文献

参考文献6

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//SIGMOD'93,Washington,D C.May,1993.
  • 2范明 孟小峰.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3Agrawal R,Srikant R.Fast algorithms for mining association rules[R].IBM Almaden Research Center,San Jose,C A,June,1994.
  • 4Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//SIGMOD'2000,Dallas,T X,May,2000.
  • 5Liu Junqiang,Pan Yunhe,Wang Ke,et al.Mining frequent item sets by opportunistic projection[C]//Proc.Of the Eighth ACM SIGKDD Intl.Conf.on Knowledge Discovery and Data Mining,Alberta,Canada,July,2002:229-238.
  • 6Park J S,Chen M S,Yu P S.An effective hash based algorithm for mining association rules[C]//Proc.1995 ACM-SIGMOD,San Jose,CA,Feb,1995:175-186.

共引文献25

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部