期刊文献+

一种基于特征点提取与随机树的增强现实系统 被引量:2

AN AUGMENTED REALITY SYSTEM BASED ON FEATURE-POINT EXTRACTION AND RANDOM TREE
下载PDF
导出
摘要 在增强现实领域,实时性是一个重要的问题。利用传统的方法训练与识别往往需要大量的时间。提出并实现了一种基于图像特征点快速提取与随机树分类的增强现实系统。在对一幅或很少的几幅包含标志物的原始图像进行训练之后,该系统能快速高效地识别摄像头新采集到的图像中的标志物,并计算标志物的空间位置坐标,有效地将真实场景与虚拟物体进行合成。该系统大大减少了识别与合成所花的时间,并在较大的视角和尺度变化下仍体现出良好的效果。 Real-time performance is an important issue in augmented reality field.To train and recognise using traditional means usually need much time.We proposed and implemented an augmented reality system which is based on fast extraction of image feature point and random tree classification.The system is able to quickly and efficiently recognise markers in the image newly captured by video camera after to be trained by one or several primitive images with the markers,and can calculate the coordinates of marker' s spatial position,effectively integrate the real scenes with virtual objects.The system drastically diminishes the time cost in recognition and integration,and performs fairly good effect in a greater visual angle and scale variation.
作者 潘晋 周暖云
出处 《计算机应用与软件》 CSCD 2010年第10期86-88,91,共4页 Computer Applications and Software
基金 上海市科研计划项目(07dz15010)
关键词 增强现实 特征点提取 随机树 Augmented reality(AR) Feature-point extraction Random tree
  • 相关文献

参考文献11

  • 1Amit Y.2D Object Detection and Recognition:Models,Algorithms,and Networks[M].The MIT Press,2002.
  • 2Lepetit V,Pilet J,Fua P.Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation[C]//Conference on Computer Vision and Pattern Recognition,Washington,DC,June 2004.
  • 3马颂德,张正友.计算机视觉计算机视觉--计算理论与算法基础[M].北京:科学出版社,2003.
  • 4Amit Y,Geman D.Shape Quantization and Recognition with Randomized Trees[J].Neural Computation,1997,9(7):1545-1588.
  • 5Nayar S K,Nene S A,Murase H.Real-Time 100 Object Recognition System.IEEE Transactions on Pattern Analysis and Machine Intelligence.1996,18(12):1186-1198.
  • 6Schaffalitzky F,Zisserman A.Multi-View Matching for Unordered Image Sets,or ″How Do I Organize My holiday Snaps?″[C]//Proceedings of European Conference on Computer Vision,2002:414-431.
  • 7Mikolajczyk K,Tuytelaars T,Schmid C,et al.A Comparison of Affine Region Detectors[J].International Journal of Computer Vision,2005.
  • 8Tuytelaars T,VanGool L.Wide Baseline Stereo Matching based on Local,Affinely Invariant Regions[C]//British Machine Vision Conference.2000:412-422.
  • 9Mikolajczyk K,Schmid C.An Affine Invariant Interest Point Detector[C]//European Conference on Computer Vision,Copenhagen.Springer,2002:128-142.
  • 10Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision,2004,20(2):91-110.

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部