期刊文献+

直升机飞控系统三维动画仿真平台设计与实现 被引量:1

DESIGNING AND IMPLEMENTING 3-DIMENSIONAL ANIMATION SIMULATION PLATFORM FOR HELICOPTER FLIGHT CONTROL SYSTEM
下载PDF
导出
摘要 为了更好地分析和设计直升机飞行控制系统,开发了直升机飞行控制三维动画仿真平台。平台适用于各种直升机飞行控制系统设计与仿真,可以载入和显示各种控制器、直升机模型,并用数字、曲线和三维动画显示仿真结果。仿真平台利用Visual C++6.0编程,MFC开发软件主界面,Matlab引擎提供后台计算服务,Creator建立直升机模型和飞行环境,Vega实现实时动画显示,实现了软件间接口平滑、无缝的互连。以UH-60A黑鹰直升机全包线飞行控制系统的设计仿真为例,采用H∞回路成形和定量反馈理论(QFT)相结合的内外回路设计方法,验证了控制方法的有效性和此仿真平台的先进性。 In order to better analyse and design the flight control system of helicopters,a 3-dimensional animation simulation platform for flight control of the helicopter is developed.The platform is suitable to many kinds of design and simulation of the helicopter flight control systems, can be used to load and show various controllers and helicopter models,and displays simulation results with digits,curves and 3-dimensional animations.The platform is programmed by Visual C++ 6.0,its main interface is developed with MFC,its background computing service is provided by Matlab engine,the helicopter model and flight environment are set up by Creator,and the real-time animation display is implemented by Vega technology.Smoothing and seamless inter-linkages between the interfaces of software are implemented.In this paper the designed simulation of full-envelope flight control system of the UH-60A "BLACK HAWK" helicopter is taken as the example,the validity of the control method and the advancement of this platform are validated by the inner-outer loop configuration designing approach which integrates H∞Loop Shaping and quantitative feedback theory(QFT).
出处 《计算机应用与软件》 CSCD 2010年第10期240-243,共4页 Computer Applications and Software
关键词 直升机 飞行仿真 MATLAB引擎 CREATOR Vega 内外回路设计 定量反馈理论 H∞回路成形 Helicopter Flight simulation Matlab engine Creator Vega Inner-outer loop design Quantitative feedback theory H∞loop shaping
  • 相关文献

参考文献13

二级参考文献41

共引文献78

同被引文献16

  • 1蔡自立,屈卫东,席裕庚.DYNAMIC MODELING FOR AIRSHIP EQUIPPEDWITH BALLONETS AND BALLAST[J].应用数学和力学,2005,26(8):979-987. 被引量:6
  • 2库利GA,吉勒特JD著.飞艇技术[M].王生译.北京:科学出版社,2007.
  • 3Bestaoui Y. Nominal trajectories of an autonomous under-actuated air-ship [J ]. International Journal of Control, Automation,and Systems :(S1598 - 6446) ,2006,4(4) :395 - 404.
  • 4Lee M, Smith S, Rroulakakis S. The high altitude lighter than air airshipefforts at the US army space and missile defense command/army forcesstrategic command [ C ] //The 18th AIAA Lighter-Than-Air SystemsTechnology Conference Seattle;AIAA,2009 : 1 -26.
  • 5Joseph B M. Development of an aerodynamic model and control law de-sign for a high altitude airship [ C ] //AIAA 3rd Unmanned UnlimitedTechnical Conference,Workshop and Exhibit,Chicago,2004 : 1 -17.
  • 6Cortes V R, Azinheira J R, Paiva E C. Experimental identification ofAURORA airship [ C ] //5 th IFAC/EURON Symposium on IntelligentAutonomous Vehicles,Lisboa,Portugal,2004.
  • 7Zhang Z W,Huo W. Planar path following control for stratospheric air-ship [J]. IET Control Theory Applications,2013,7(2) :185 -201.
  • 8Chen W J,Zhang D X,Duan D P. Equilibrium configuration analysis ofnon-rigid airship subjected to weight and buoyancy[C]//llth AIAAATIO Convention, Virginia Beach, VA ,2011.
  • 9Gomes V 6,Ramos J G. Airship dynamic modeling for autonomous op-eration [C ] //Proceedings of the 1998 IEEE International Conferenceon Robotics and Automation,Belgium ; IEEE,1998 : 3462 - 3467 ..
  • 10Amar R C. Toward autonomic computing: adaptive neural network fortrajectory planning[ J]. International Journal of Cognitive Informaticsand Natural Intelligence, 2007,1(2) :37 - 55.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部