摘要
在Pawlak Rough集研究路线上,有两种方法经常被采用:一种用代数方法和构造性方法,另外一种是逻辑系统的方法,即利用一个公理系统来刻画上、下近似算子,这种方法亦称为公理化方法。遵循公理化路线对Pawlak Rough集的变异——Rough Fuzzy集进行公理化处理,证明了公理化的存在,并讨论它们的性质。
There are two approaches in the study of the Pawlak rough set theory.One uses the algebra method and constructible techniques; the other is a logical system method that uses a axiomatization system to depict a lower and an upper approximation.The latter is named axiomatization approach.This paper follows the axiomatization approach to axiomatize Rough Fuzzy sets that are variations of Pawlak's Rough sets to prove such axiomatization is available.Their instinctive properties are also discussed.
出处
《计算机应用与软件》
CSCD
2010年第10期247-248,295,共3页
Computer Applications and Software