期刊文献+

基于SVDD的多设备故障源识别定位方法研究

Study on the Fault Sources Identification and Localization of Multi-Machine System Based on SVDD Method
下载PDF
导出
摘要 对由多个设备组成的系统,检测的快速性和面临的小样本限制是进行声学故障源识别通常要考虑的两个重要问题。本文以线谱增强类声学故障为研究对象,提出了一种基于支持向量数据描述(SVDD)的故障源识别定位方法。该方法依据正常样本建立数据描述模板,对线谱增强类声学故障的出现进行识别,然后通过与各个设备上测得的传感器信号联合分析,实现故障设备的准确定位。实验结果表明该方法具有较好的工程应用性。 Rapidity of detection and limitation of small sample set are two important issues for identifying the acoustic fault sources of the system comprising multiple machines.In this paper,a new method based on Support Vector Data Description(SVDD)is presented to identify and localize the line-spectrum power-strengthening acoustic fault sources of the system.In this method,according to the normal-state samples,a data description template is established,and the line-spectrum power-strengthening acoustic fault sources are detected.Combining the fault detection result with the signal of sensors installed on each machine,the exact localization of the machinery fault is realized.The experiment results show that the method is feasible in engineering application.
出处 《噪声与振动控制》 CSCD 北大核心 2010年第5期137-140,148,共5页 Noise and Vibration Control
基金 国家自然科学基金(基金编号:50775218)
关键词 振动与波 故障源识别定位 支持向量数据描述 线谱增强 小样本 vibration and wave fault sources identification and localization support vector data description line spectrum power increase small sample
  • 相关文献

参考文献6

二级参考文献7

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部