期刊文献+

2-共振四角系统的刻画 被引量:1

The Characterization of 2-resonant Polyomino Systems
下载PDF
导出
摘要 利用g-割线证明了四角系统G是2-共振的当且仅当G中任意两个互不相交的边界正方形是相互共振的. One makes use of g-cut segment to prove that the polyomino system G is 2-resonant if and only if every pair of disjoint boundary squares of G are resonant.
作者 王守中 江蓉
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期26-28,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11061027)
关键词 四角系统 完美匹配 2-共振 g-割线 polyomino system perfect matching 2-resonant g-cut segment
  • 相关文献

参考文献13

  • 1Hetyei G. Rectangular Configurations Which Can Be Covered By 2 × 1 Rectangles [M]. Hungarian: Pecsi Tan Foisk Kozl, 1964: 351--367.
  • 2Puzzles, Patterns, Problems, et al. Polyominoes [M]. New Jersey: Princeton University, 1994:85-96.
  • 3Zhang Heping. The Connectivity of Z Transformation Graphs of Perfect Matchings of Polyminoes [J]. Discrete Math, 1996, 158: 257- 272.
  • 4Chen Rong-si. Perfect Matchings of Generalized Polyomino Graphs [J]. Graphs and Combinatorics, 2005, 21 : 515 -- 529.
  • 5Zhang Heping, Zhang Fuji. Perfect Matehings of Polyomino Graphs [J]. Graphs and Comhinatorics, 1997, 13:295- 304.
  • 6Zhang Fuji, Zhang Heping. Plane Elementary Bipartite Graphs [J]. Discrete Applied Mathematics, 2000, 105:291 -- 311.
  • 7Lovasz L, Plummer M D. Matching Theory [M]. Amsterdam: North-Holland, 1986.
  • 8Zhang Fuji, Wang Lusheng. k-Resonance of Open-ended Carbon Nanotubes [J]. Journal of Mathematical Chemistry, 2004, 35: 87--103.
  • 9Chen Rongsi, Guo Xiaofeng. k-Coverable Coronoid Systems [J]. Journal of Mathematical Chemistry, 1993, 12:147 -- 162.
  • 10王建锋,王静,冶成福.稠密图■的色唯一性[J].西南大学学报(自然科学版),2009,31(4):16-20. 被引量:5

二级参考文献32

共引文献15

同被引文献6

  • 1GUTMAN I, POLANSKY O E. Mathematical Concepts in Organic Chemistry [M]. Berlin: Spinger, 1986.
  • 2KHADIKAR P V, DESHPANDE N V, KALE P P, et al. The Szeged and an Analogy with the Winner Index [J].J Chem Inf Comput Sci, 1995, 35: 547--550.
  • 3DAS K C, GUTMAN I. Estimating the Szeged Index [J]. Applied Mathematics Letters, 2009, 22:1680--1684.
  • 4KHADIKAR P V, KALE P P, DESHPANDE N, et al. Novel PI Indices of Hexagonal Chains [J]. Journal of Mathe- matical Chemistry, 2001, 29: 143--150.
  • 5KHADIKAR P V, KARMARKAR S, AGRAWAL V K. A Novel PI Index and its Applications to QSRP/QSAR Studies [J]. J Chem Inf Comput Sci, 2001, 41(4):934--949.
  • 6吴廷增,扈生彪.几类图的零度[J].西南大学学报(自然科学版),2010,32(4):97-100. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部