期刊文献+

南海北部集合卡曼滤波同化SST试验 被引量:1

SST assimilation experiment in the northern South China Sea using ensemble Kalman filter
下载PDF
导出
摘要 基于POM(Princeton Ocean Model)建立一个南海北部集合卡曼滤波的同化模式,主要用于卫星海表面温度的同化。模式的平均水平分辨率为5km,垂向分层为20层;侧边界条件嵌套到一个大范围的南海海洋模式,在同化方案上采用一个均方根集合卡曼滤波算法,避免观测的扰动;适当引入局地化算子,消除样本在空间上的虚假相关,同时增加集合样本的自由度。该同化试验同化了2008年夏季6月到7月的GHRSST(Global High-Resolution Sea Surface Temperature),然后采用2008年夏季SCOPE(Northern South China Sea Coastal Oceanographic Process Ex-periment)航次的温、盐数据对同化结果进行评估。结果表明,相对于未同化模式模拟结果,同化模式温度的改善比较明显,表现在加强了南海北部的上升流,校正了海表温度的偏差,改善了温度的垂向分布。由于集合卡曼滤波是一种多变量调整的同化方法,同化SST不仅能改善表层与次表层的温度分布,而且对流场和盐度的调整也比较明显。 An ensemble Kalman filter(EnKF) scheme is applied to assimilate sea surface temperature(SST) in the northern South China Sea(SCS) using the Princeton Ocean Model(POM).The assimilation model has a horizontal resolution of 5km and a vertical resolution of 20 layers.Lateral boundary conditions are provided by a larger domain SCS model.A square root filter is applied to avoid perturbations induced by observations.Localization is used in the assimilation system to remove pseudo correlations and to add rank of ensemble.The Global High-Resolution Sea Surface Temperature(GHRSST) in June and July 2008 is assimilated in this study.To validate the assimilation results,hydrographic data from the Northern South China Sea Coastal Oceanographic Process Experiment(SCOPE) cruises are used.The results show that the assimilated SST can effectively improve the temperature distribution not only at surface but also in the subsurface.After the SST assimilation,upwelling in this region is strengthened and mixed layer is deepened.At the same time,because the EnKF is a multivariable assimilation scheme,salinity and currents are also corrected by assimilating SST.
出处 《热带海洋学报》 CAS CSCD 北大核心 2010年第5期10-16,共7页 Journal of Tropical Oceanography
基金 财政部行业专项(GYHY200706005) 中国科学院南海海洋研究所所青年人才领域前沿项目(SQ200814) 中国气象局风云气象卫星遥感开发与应用项目(FiDAF-2-05)
关键词 集合卡曼滤波 同化 南海北部 SST ensemble Kalman filter assimilation northern South China Sea SST
  • 相关文献

参考文献31

  • 1HONG Bo,WANG Dongxiao.Diagnostic analysis on the northern South China Sea winter counter-wind current[J].Chinese Science Bulletin,2006,51(B12):9-16. 被引量:9
  • 2CHEUNG Y Y. Modeling upwelling circulation over continental shelf in the northern South China sea [D]. Hong Kong Hong Kong University of Science and Technology, 2006: 11-14.
  • 3GAN JIANPING, LI LI, WANG DONGXIAO, et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea[J]. Cont Shelf Res, 2009, 29 (4): 728-740.
  • 4CHEN D, ZEBIAK S E, CANE M A. Initialization and predictability of a coupled ENSO forecast model[J]. Mon Weather Rev, 1997, 125: 773-788.
  • 5ROSATI A, MIYAKODA K, GUDGEL R. The impact of ocean initial conditions on ENSO forecasting with a coupled model[J]. Mon Weather Rev, 1997, 125: 754-772.
  • 6OBERHUBER J M, ROECKNER E, CHRISTOPH M, et al. Predicting the '97 E1 Nifio event with a global climate model[J]. Geophys Res Lett, 1998, 25(13): 2273-2276.
  • 7SYU H H, NEELIN D. ENSO in a hybrid coupled model. Part II: prediction with piggyback data assimilation[J]. Climate Dyn, 2000, 16(1): 35-48.
  • 8TWIGT D J, DE GOEDE E D, SCHRAMA E J O, et al. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing[J]. Ocean Dyn, 2007 57(4/5): 467-484.
  • 9TANG Y, KLEEMAN R, MOORE A M. SST assimilation experiments in a tropical Pacific Ocean model[J]. J Phys Oceanogr, 2004, 34: 623-642.
  • 10BELL M J, FORBES R M, HINES A. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. J Mar Syst, 2000, 25(1): 1-22.

二级参考文献18

共引文献40

同被引文献28

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部