期刊文献+

流形及其附加结构

Manifolds and Their Additional Structures
下载PDF
导出
摘要 从附加结构的角度将流形的多种概念有机地串联起来,并给出了一种直观理解流形、微分流形等抽象概念的新颖方式.同时,本文阐述了微分几何的主要特点、思想,介绍了与附加结构相关的流形分类问题、Poincare猜测等的研究情况. We organize the concepts of a variety of manifolds from the perspective of additional structures.And we give a new manner to understand the concepts of manifold and differential manifold.Furthermore,we show the characteristic of differential geometry,and present the research of additional structures of manifolds,such as the classification problem of manifolds,Poincare conjecture.
出处 《大学数学》 2010年第5期152-155,共4页 College Mathematics
基金 南京理工大学自主科研专项计划资助项目(2010ZYTS064)
关键词 微分几何 流形 附加结构 POINCARE猜想 RICCI流 differential geometry manifold additional structures Poincare conjecture Ricci flow
  • 相关文献

参考文献9

  • 1Riemann B. On the hypotheses which lle at the bases of geometry[J]. Translated by William Kingdon Clifford. Nature, 1873, 8( 183):14-17.
  • 2MichaelAtiyah 白承铭.二十世纪的数学[J].数学译林,2002,21(1):1-14. 被引量:13
  • 3Chern S S. A simple intrinsic proof of the Gauss-Bonnet formula for a closed Riemmannian manifolds[J]. Ann. Math. , 1944, 45(4): 747-752.
  • 4Milnor J. On manifolds homeomorphic to the 7-sphere[J]. Ann. Math. , 1956,64(2):399-405.
  • 5Milnor J. Differentiable structures on spheres[J]. Am. J. Math. , 1959, 81(4):962-972.
  • 6Kervaire M A. A manifold which does not admit any differentiable structure[J]. Comment. Math. Helv. , 1960, 34(1): 257-270.
  • 7Perelman G. The entropy formula for the Ricci flow and its geometric applications. Arxiv: math. DG/ 0211159,2002.
  • 8Perelman G. Ricci flow with surgery on three-manifolds. Arxiv: math. DG/0303109,2003.
  • 9Perelman G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Arxiv: math. DG/0307245,2003.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部