期刊文献+

污泥屏障氧化缓冲容量与重金属再溶出关系研究 被引量:1

Oxidation Buffer Capacity of Sewage Sludge Barrier for Immobilization of Heavy Metals
原文传递
导出
摘要 借助微生物厌氧活动特别是硫酸盐还原反应,污泥屏障可用来固定尾矿堆场重金属.针对尾矿风化淋滤形成的酸性采矿废水(AMD)与污泥之间发生的氧化还原反应导致的重金属溶出问题,通过氧化滴定实验研究了不同污泥悬液的氧化缓冲容量及其与重金属浓度的关系.结果表明,污泥悬液的氧化缓冲容量随着悬液固液比的增大略有减小,但随着悬液厌氧培养时间的延长而增加.污泥的氧化缓冲容量主要来自Eh≤-150mV的强烈还原区间,可达氧化缓冲容量的50%以上.氧化滴定过程中发现,当Eh≥-150mV时,Zn首先明显溶出;当Eh≥150mV时,Cu和Pb明显溶出.基于实验结果,建立了污泥屏障在AMD渗流条件下氧化缓冲容量消耗的数学模型.模拟计算结果表明,当AMD水头高度为10m时,厚度2m的污泥屏障经历AMD溶液38787a的渗透氧化,仍可保持原有的强烈还原状态,具备对重金属的固定效果. Benefit from the microbial activities especially the anaerobic sulfate reduction processes,sewage sludge could be used as a barrier to immobilize the heavy metals leached from tailings.With respect to the redox reaction between sewage sludge and acid mine drainage(AMD),oxidation titration test was carried out to study the effect of oxidation buffer capacity(OBC) of sewage sludge on the immobilization of heavy metals.Test results showed that OBC of sludge suspensions was decreased slightly with the solid-liquid ratio of the suspensions,but increased with the anaerobic incubation time,and that more than 50% of OBC was contributed by the sludge existed in strongly-reduction conditions(Eh ≤-150 mV).During oxidation titration test,Zn was released obviously when Eh ≥ 150 mV,while Cu and Pb released obviously when Eh ≥ 150 mV.According to the test results,a mathematical model was established to predict the OBC consumption of the sludge barrier under AMD penetrating conditions.The simulation results showed that a sludge barrier with 2m thickness,even undergone 38 787-years oxidation by AMD under 10m water head,keep in a strongly-reduced condition and,therefore,promote an immobilization of heavy metals from AMD in the barrier.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第11期2705-2712,共8页 Environmental Science
基金 国家自然科学基金项目(50678075)
关键词 酸性采矿废水 污泥 还原屏障 重金属 氧化缓冲容量 acid mine drainage(AMD) sewage sludge reducing barrier heavy metal oxidation buffer capacity
  • 相关文献

参考文献26

  • 1张虎元,王宝,董兴玲,范志明,鞠圆圆.污泥用作渗透性反应壁填料的可行性研究[J].环境科学,2010,31(5):1280-1286. 被引量:5
  • 2Wang B, Zhang H, Fan Z, et al. Compacted sewage sludge as a barrier for tailing impoundment [ J]. Environ Earth Sci, 2010, 61:931-937.
  • 3Johnson D B, Hallberg K B. Acid mine drainage remediation options: a review [J]. Sci Total Environ, 2005,338(1-2) : 3- 14.
  • 4Jessberger H L, Heibrock G. Development of a safety concept for landfill liner systerms [ A ]. In: August H, Holzohner U, Meggyes T. Advanced Landfill Liner Systems [C]. London: Thomas Telford, 1997. 101-109.
  • 5Benson C H, Daniel D E. Minimum Thickness of Compacted Soil Liners: I. Stochastic Models [J]. J Geotech Eng, 1994,120 (1) : 129-172.
  • 6Shackelford C D, Benson C H, Katsumi T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standards liquids[J]. Geotext Geomembranes, 2000,18 : 133-161.
  • 7Lake C B, Rowe R K. Diffusion of sodium and chloride through geosynthetic clay liners [J]. Geotext Geomembranes, 2000,18 (2-4) : 103-131.
  • 8Shackelford C D. Reactive nature of passive containment barriers [A]. In: 14th International Conference on Soil Mechanics and Foundation Engineering [C]. Hamburg, Germany: Balkema, 1999. 2535-2536.
  • 9Shackelford C D, Jefferis S A in situ remediation [ A ]. Geoenvironmental engineering for In: International Conference on Geotechnical and Geoenvironmental Engineering [C]. Melbourne, Australia: Technomic Publ Co, Inc, Lancaster, PA 2000. 121-185.
  • 10Dennis M L, Turner J P. Hydraulic conductivity of compacted soil treated with biofilm [ J]. J Gcotech Geoenviron Eng, 1998, 124(2) : 120-127.

二级参考文献27

  • 1丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18. 被引量:66
  • 2Lottermoser B G. Mine Wastes [ M ]. New York: Springer, 2007. 91-101.
  • 3Ribet I, Ptacek C J, Blowes D W, et al. The potential for metal release by reductive dissolution of weathered mine tailings[ J]. J Contam Hydrol, 1995, 17(3) : 239-273.
  • 4Feng D, Aldrich C, Tan H. Treatment of acid mine water by use of heavy metal precipitation and ion exchange [ J]. Miner Eng, 2000, 13(6) : 623-642.
  • 5Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs[J]. J Environ Qual, 2007, 36 (1): 1-16.
  • 6Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[ J]. Appl Microbiul, 1969, 17(2) : 297-302.
  • 7Benner S G, Blowes D W, Ptacek C J. A full-scale porous reactive wall for prevention of acid mine drainage [ J]. Ground Water Monit R, 1997, 17(4) : 99-107.
  • 8Ludwig R D, Mcgregor R G, Blowes D W, et al. A permeable reactive barrier for treatment of heavy metals[ J]. Ground Water,2002, 40(1) : 59-66.
  • 9Waybrant K R, Blowes D W, Ptacek C J. Selection of reactive mixtures for use in permeable reactive wails for treatment of mine drainage[ J]. Environ Sci Technol, 1998, 32(13) : 1972-1979.
  • 10Waybrant K R, Ptacek C J, Blowes D W. Treatment of mine drainage using permeable reactive barriers: column experiments [J]. Environ Sci Technol, 2002, 3fi(6) : 1349-1356.

共引文献4

同被引文献31

  • 1中华人民共和国建设部.CJ/T221-2005城市污水处理厂污泥检验方法[S].北京:中国标准出版社,2005.
  • 2中华人民共和国水利部.GB/T50123-1999土工试验方法标准[S].北京:中国计划出版社,1999.
  • 3HUTCHISON I P G, ELLISON R D. Mine waste management[M]. Boca Raton: Lewis Publishers, 1992.
  • 4CHANDLER A J, EIGHMY T T, Hartl6n J, et al. Municipal solid waste incinerator residues[M]. Amsterdam: Elsevier, 1997.
  • 5BONAPARTE R, DANIEL D E, KOERNER R M. Assessment and recommendations for improving the performance of waste containment systems[R]. Washington: United States Environmental Protection Agency, 2002.
  • 6RUMER R R, MITCHELL J K. Assessment of barrier containment technologies[M]. Springfield: International Containment Technology Workshop, 1995.
  • 7United States Environmental Protection Agency. Evaluation of subsurface engineered barriers at waste sites[R]. Washington: United States Environmental Protection Agency, 1998.
  • 8WANG Bao, ZHANG Hu-yuan, FAN Zhi-ming, et al . Compacted sewage sludge as barrier for tailing impoundment[J]. Environmental Earth Sciences, 2010, 61: 931-937.
  • 9DILIUNAS J, DUNDULIS K, GADEIKIS S, et al. Geotechnical and hydrochemical properties of sewage sludge[J]. Bulletin of Engineering Geology and the Environment, 2010, 69 (4), 575-582.
  • 10KAMON M, ZHANG H, KATSUMI T. Redox effects on heavy metal attenuation in landfill clay liner[J]. Soils and Foundations, 2002, 42(3): 115-126.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部