期刊文献+

电化学产电菌的分离及性能评价 被引量:6

Isolation and Evaluation of Exoelectrogenic Bacteria in a Baffled Air-cathode Microbial Fuel Cell
原文传递
导出
摘要 利用兼性滚管法分离了折流板空气阴极微生物燃料电池(BAFMFC)A、B两格室的阳极生物膜,共获得19株纯菌.将菌株投加至无菌立方型反应器中,检验其产电特性.利用交流阻抗法测量各纯菌电池的内阻,结果显示38个电池的欧姆内阻为25Ω±5Ω,说明了各电池的产电差异来源于菌株本身的活性.其他运行条件均保持不变,在1000Ω外阻下,7株纯菌电池的输出电压在200mV以上.其中,A格室产电活性最高的菌株(A2)产生的最大电压为328mV,输出的最大功率密度为165.1mW/m2,B格室产电活性最高的菌株(B1)最大电压为241mV,最大功率密度为214.4mW/m2.原子力显微镜和脂肪酸快速鉴定表明,A2为肠杆菌科的杆菌,B1为厚壁菌门的芽孢杆菌. Facultative tube methods were adopted for isolation from biofilm in two compartments of a baffled air-cathode microbial fuel cell(BAFMFC).The separated strains were then putted into a sterile cubic MFC individually under the same condition in order to evaluate its electrogenic characteristic.Electrochemical impedance spectrometer(EIS) was employed for the internal resistance testing.It can be found that ohmic internal resistance was around 25Ω,indicating the cell performance determined only by activity of the strain.Nineteen strains were obtained,seven of which had voltages over 200 mV under 1 000Ω.The strain(A2),owned the highest electrogenic activity in compartment A,has a voltage of 328 mV with the maximum power density 165.1 mW /m2.The maximum power density of 214.4 mW /m2 was produced by the isolate B1(the best exoelectrogenesis in compartment B),while the maximal voltage of 241 mV was achieved.Identification of fatty acids reveals that A2 belongs to Enterobacteriaceae,and B1 belongs to the genus Bacillus.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第11期2804-2810,共7页 Environmental Science
基金 国家自然科学基金项目(50638020 50821002)
关键词 折流板空气阴极微生物燃料电池 兼性滚管法 电压 功率密度 脂肪酸鉴定 baffled air-cathode microbial fuel cells(BAFMFC) facultative tube isolation methods voltage power density identification of fatty acids
  • 相关文献

参考文献23

  • 1Allen R M, Bennetto H P. Microbial fuel cells--Electricity production from carbohydrates [ J ]. Applied Biochemistry and Biotechnology, 1993, 39(40) : 27-40.
  • 2Logan B E, Hamelers B, Rozendal R A, et al. Microbial fuel cells: methodology and technology[ J]. Environmental Science and Technology, 2006, 17 : 5181-5191.
  • 3Bond D R, Lovely D R. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism [ J ]. Nature, 1987, 330(6145) :252-254.
  • 4Mehta T, Coppi M V, Childers S E, et al. Outer membrane c- type cytochromes required for Fe (Ⅲ) and Mn (Ⅳ) oxide reduction in Geobacter sulfurreducens [ J ]. Applied and Environmental Microbiology, 2005, 71: 8634-8641.
  • 5Holmes D E, Chaudhuri S K, Nevin K P, et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens[ J]. Environmental Microbiology, 2006, 8 (10) : 1805-1815.
  • 6Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, ShewaneUa putrefaciens [ J ]. Enzyme Microbial Technology, 2002, 30 : 145- 152.
  • 7Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [ J ]. Proceedings of the National Academy of Sciences, 2006, 103 : 11358-11363.
  • 8Nevin K P, Lovley D R. Lack of production of electron-shuttling compounds or solubilization of Fe (Ⅲ) during reduction of insoluble Fe (Ⅲ) oxide by Geobacter metallireducens [ J ]. Applied and Environmental Microbiology, 2000, 66:2248-2251.
  • 9Park H S, Kim B H. A Novel Electrochemically Active and Fe (Ⅲ) -reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell [ J ]. Anaerobe, 2001, 7:297-306.
  • 10Pham C A, Jung S J, Phung N T, et al. A novel electrochemically active and Fe (Ⅲ)-reducing bacterium phylogenetieally related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS Microbiology Letters, 2003, 223: 129-134.

二级参考文献163

  • 1薛爱群,贾锋,齐顺章.细菌总蛋白含量测定方法的改进[J].微生物学通报,1994,21(1):58-59. 被引量:11
  • 2冯雅丽,联静,杜竹玮,李浩然.无介体微生物燃料电池研究进展[J].有色金属,2005,57(2):47-50. 被引量:17
  • 3洪义国,郭俊,许志诚,岑英华,孙国萍.与环境污染物转化相关的细菌厌氧呼吸研究动态[J].应用与环境生物学报,2006,12(6):878-883. 被引量:2
  • 4Kim H J, Park H S, Hyun M S. A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciens [J]. Enzyme Microbial Technology, 2002,30:145-152.
  • 5Logan B E, Regan J M. Microbial fuel cells-challenges and applications [J]. Environment Science and Technology, 2006,40: 5172-5180.
  • 6Bullen R A, Arnot T C, Lakemanc J B, et al. Biofuel cells and their development [J]. Biosansors and Bioeleetronies, 2006,21:2015-2045.
  • 7Bond D R, Lovley K R. Electricity production by geobaeter sulfurreducens attached to electrodes [J]. Applied and Environmental Microbiology, 2003,69:1548-1555.
  • 8Lee J, Phung T N, Chang I S. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rRNA analysis [J]. FEMS Microbiology Letters, 2003,223:185-191.
  • 9Reimers C E, Tender L M, Fertig S. Harvesting energy from the marine sediment- water interface [J]. Environment Science and Technology, 2001,35:192-195.
  • 10Leang C, Coppi M V, Lovley D R. A c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurre-ducens [J]. Journal of Bacteriology, 2003,185,2096-2103.

共引文献110

同被引文献108

  • 1蔡强,何苗,施汉昌.电化学免疫传感器在环境污染监测中的研究进展[J].传感技术学报,2004,17(3):526-530. 被引量:8
  • 2陈义光,李文均,崔晓龙,姜成林,徐丽华,张玉琴,文孟良.具抗肿瘤活性放线菌菌株YIM 90022的分离和系统发育分析[J].微生物学报,2006,46(5):696-701. 被引量:25
  • 3黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13. 被引量:70
  • 4Chen Y P, Zhao Y, Qiu Q K, et al. 2011. An innovative miniature microbial fuel cell fabricated using photolithography [ J]. Biosensors & Bioeleetronics, 26(6) : 2841-2846.
  • 5Chiao M, Lam B K, Lin L W. 2006. Micromachined microbial and photosynthetic fuel cells[J]. Journal of Micromechanics and Microengineering, 16(12): 2547-2553.
  • 6Crittenden S R, Sund C J, Sumner J J. 2006. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer [ J]. Langmuir, 22(23) : 9473-9476.
  • 7He Z, Florian M. 2009. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [ J ]. Energy and Environmental Science, 2(2) : 215-219.
  • 8Hou H J, Li L, Cho Y, et al. 2009. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes [ J ]. PLoS ONE, 8 (4) : e6570.
  • 9Hou H J, Li Lei, Figueiredo P D, et al. 2011. Air-cathode microbial fuel cell array : a device for identifying and characterizing electrochemically active microbes [ J]. Biosensors & Bioelectronics, 26(5) : 2680-2684.
  • 10Liu G L, Yates M D, Cheng S A, et al. 2011. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments [ J ]. Bioresource Technology, 102 ( 15 ) : 7301- 7306.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部