期刊文献+

一种用于智能车环境探测的立体视觉传感器 被引量:6

A Stereo Vision Sensor for Environmental Detection of Intelligent Vehicle
下载PDF
导出
摘要 设计了应用于户外智能车环境感知的立体视觉系统,并提出了两种立体匹配算法,分别实现不同的功能。基于多特征提取的稀疏匹配算法首先通过图像局部增强处理减弱光照和场景变化的影响,然后在对极线引导和连续性约束下提取立体图像的角点特征和边缘特征进行匹配,能够实时探测环境的三维概貌,并突出环境中的障碍物信息,实现辅助车辆自主导航的功能;基于特征引导的稠密匹配算法采用了最小割/最大流算法,并利用多特征匹配的结果来剔除稠密匹配中的成块误匹配,能够重建出未知环境详细的三维信息,实现三维可视化功能。最后通过试验验证了两种算法的有效性。 A stereo vision system is designed for environmental perception of outdoor intelligent vehicle, and a couple of stereo matching algorithms(MESM and FGDM) are proposed for different usage. For the multi-feature extraction based sparse matching algorithm(MESM), local image enhancement technology is proposed firstly to weaken the influence of varying illumination and scenes. Then corner features and edge features are extracted for matching under epipolar guidance and continuity constraint. MESM method can provide a roughly description of 3-D environment information on real time and highlight the obstacles in the environment, which contributes to the achievement of autonomous vehicle navigation. For the feature-guided dense matching algorithm(FGDM), a min-cut/max-flow algorithm is considered, and the result of MESM is utilized to eliminate pseudo matching of dense matching. FGDM method can provide a detailed description of 3-D environment information, which contributes to the visualization of unknown places. Experiments confirm the effectiveness of the proposed algorithms.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第9期1247-1251,共5页 Chinese Journal of Sensors and Actuators
基金 中央高校基本科研业务基金资助(20103013852007)
关键词 计算机视觉 智能车 环境探测 稀疏匹配 稠密匹配 computer vision intelligent vehicle environmental detection sparse matching dense matching
  • 相关文献

参考文献12

  • 1Alberto B,Claudio C,Rean I F,et al.Obstacle Detection with Stereo Vision for Off-Road Vehicle Navigation[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,California,2005,(3):65-72.
  • 2Huh K,Park J,Hwang J,et al.A Stereo Vision-Based Obstacle Detection System in Vehicles[J].Optics and Lasers in Engineering,2008,46(2):168-178.
  • 3Alberto B,Claudio C,Porta P P,et al.The Single Frame Stereo Vision System for Reliable Obstacle Detection Used During the 2005 DARPA Grand Challenge on TerraMax[C]//2006 IEEE Intelligent Transportation Systems Conference,Toronto,ON,2006,745-752.
  • 4Kurtz J.Demo III Experimental Unmanned Vehicle Autonomous Mobility System Overview[C]//Proceedings of the 1998 IEEE International Symposium on Intelligent Control,Gaithersburg,MD,1998,640-643.
  • 5Hummel B,Kammel S,Dang T.Vision-Based Path-Planning in Unstructured Environments[C]//2006 IEEE Intelligent Vehicles Symposium,Meguro-Ku,Tokyo,2006,176-181.
  • 6Maarten V,Marc P,Luc G V.A Stereo-Vision System for Support of Planetary Surface Exploration[J].Machine Vision and Applications,2003,14(1):5-14.
  • 7Bajracharya M,Tang B,Howard A,et al.Learning Long-Range Terrain Classification for Autonomous Navigation[C]//2008 IEEE International Conference on Robotics and Automation.Pasadena,CA,2008,4018-4024.
  • 8Shneier Michael,Chang Tommy,Hong Tsai,et al.Learning Traversability Models for Autonomous Mobile Vehicles[J].Autonomous Robots,2008,24(1):69-86.
  • 9Tsai R,Lenz R K.A Technique for Fully Autonomous and Efficient 3D Robotics Hand/eye Calibration[J].IEEE Transactions on Robotics and Automation,1989,5(3):345-358.
  • 10张晓玲,张宝峰,林玉池.远距离运动目标三维测量中图像匹配的研究[J].光电子.激光,2008,19(3):373-377. 被引量:6

二级参考文献25

共引文献9

同被引文献52

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部