期刊文献+

基于网格和密度的数据流聚类算法

Data stream clustering algorithm based on grid and density
下载PDF
导出
摘要 针对数据流的特点,提出了一种新的网格密度结合的GCTS算法.该算法采用双层架构,在线层实现了网格密度参数的自设定,离线层以网格单元的重心为中心点,建立一个最大的子网格,使候选网格中的局部密集区域转化成了密集网格.使用最小生成树的算法生成聚类结果,提高了聚类效果. According to the characteristics of the data stream,a new clustering algorithm GTCS which combined the approach based on density and grid was presented.By means of the model of double-layer construction,the method set the key of densities of the data grids automatically in online layer.The offline layer using the data gravity for the center,a maximum of subgrid is built.It makes the dense regions of the candidate grids into dense grid.It uses the minimum spanning tree clustering algorithm to get the clustering results and improve the clustering affect.
作者 张丽 胡颖
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2010年第4期75-78,84,共5页 Journal of Zhengzhou University of Light Industry:Natural Science
关键词 数据流 聚类算法 子网格 data stream clustering algorithm subgrid
  • 相关文献

参考文献8

  • 1Han J,Kamber M.数据挖掘:概念与技术[M].英文版.北京:机械工业出版社,2006:467-489.
  • 2Guha S ,Mishra N ,Motwani R,et al. Clustering data streams [C]// Proc of FOCS, Washington: IEEE Comp Soc Publishers,2000.
  • 3O'Callaghan L,Mishra N,Meyerson A, et al. Streaming data algorithms for high-quality clustering [ C ]//Proc of ICDE Conf, Washington : IEEE Comp Soc Publishers ,2000.
  • 4Aggarwal C, Han J, Wang J, et al. A framework for clustering evolving data streams [ C ]//Proc of the 29th VLDB Conf, New York : Springer,2003.
  • 5Aggarwal C,Han J,Wang J,et al. A framework for projeeted clustering of high dimensional data streams [ C ]//Proc of the 30th VLDB Conf, San Francisco: Morgan Kan Fmann Publishers,2004.
  • 6高永梅,黄亚楼.一种基于网格和密度的数据流聚类算法[J].计算机科学,2008,35(2):134-137. 被引量:6
  • 7Cao F, Estery M, Qian W, et al. Density-based clustering over an evolving data stream with noise[ C]//Proc of the SIAM Conf on Data Mining, New York:Assoc for Comp Mach Publishers ,2006.
  • 8刘青宝,戴超凡,邓苏,张维明.基于网格的数据流聚类算法[J].计算机科学,2007,34(3):159-161. 被引量:10

二级参考文献18

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 3Aggarwal CC,Han J,Wang J,et al.A framework for clustering evolving data streams.In:Proc.of VLDB,2003
  • 4Aggarwal C C,Han J,Wang J,et al.A framework for projected clustering of high dimensional data streams.In:Proc.of VLDB,2004
  • 5Beringer J,Hullermeier E.Online Clustering of Parallel Data Streams.Data &-Knowledge Engineering,2005
  • 6Guha S,Meyerson A,Mishra N,et al.Clustering Data Streams:Theory and Practice.In:TKDE special issue on clustering,Vol.15,2003
  • 7Cao F,Estery M,Qian W,et al.Density-based Clustering over an Evolving Data Stream with Noise.In:Proceedings of the 2006SIAM Conference on Data Mining (SDM'2006)
  • 8Ester M,Kriegel H-P,Sander J,et al.Incremental clustering for mining in a data warehousing environment.In:Gupta A,Shmueli O,Widom J,eds.Proceedings of the 24thInternational Conference on Very Large Data Bases.New York:Morgan Kaufmann Publishers Inc,1998.323~333
  • 9Liu Qing-Bao,Deng Su,Lu Changhui,et al.Relative Density Based K-nearest Neighbors Clustering Algorithm.In:the Second International Conference on Machine Learning and Cybernetics,China,2003
  • 10Ester M,Kriegel H-P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.In:Proc.2nd Int Conf on Knowledge Discovery and Data Mining,Portland,OR,1996.226~231

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部