期刊文献+

基于模糊聚类和模糊支持向量机的湿法炼锌净化除钴过程建模 被引量:3

Modeling of cobalt removal purification process in zinc hydrometallurgy based on FCM-SVM
下载PDF
导出
摘要 提出了一种基于模糊C-均值(FCM)聚类和模糊支持向量机(SVM)方法相结合的湿法炼锌净化除钴过程建模方法。该方法针对样本空间影响支持向量机泛化性能和样本数量影响计算复杂度的问题,首先采用模糊聚类将学习样本分类,然后在各个类的样本空间内采用模糊支持向量机进行训练,并对各支持向量机模型的输出加权作为过程模型的输出。以净化除钴过程生产数据进行实验验证的结果表明,该方法明显减少了模型的训练时间,模型具有精度高、泛化性能好等特点,可以用于净化过程的优化控制。 A modeling method for cobalt removal purification process in zinc hydrometallurgy based on the combination of fuzzy C-means (FCM) clustering and fuzzy support vector machine (SVM) is proposed. Considering that the sample space influencs the performance of SVM and the number of samples influences the computation complexity, the method divides the original sample space into subspaces by the FCM clustering firstly, then, trains the samples in each subspace by the fuzzy SVM, and finally, establishes the process model and takes the weighted output of each fuzzy SVM model as the output of the process model. The experimental results show that the proposed method greatly reduces the training time. Moreover, the proposed model has the high accuracy and good generalization performance. It can be used for operation optimization of the purification process of cobalt removal.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第10期1068-1071,共4页 Chinese High Technology Letters
基金 863计划(2009AA04Z124 2009AA04Z124) 国家自然科学基金(60874069) 湖南省自然科学基金(09JJ3122)资助项目
关键词 净化除钴过程 模糊聚类 支持向量机(SVM) purification process of cobalt removal, fuzzy C-means clustering, support vector machine (SVM)
  • 相关文献

参考文献12

  • 1Raghavan R,Mohanan P K,Verma S K.Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process.Hydrometallurgy,1999,51(2):187-206.
  • 2Boyanov B S,Konareva V V,Kolev N K.Purification of zinc sulfate solutions from cobalt and nickel through activated cementation.Hydrometallurgy,2004,73(1):163-168.
  • 3Li D C,Fang Y H.An algorithm to cluster data for efficient classification of support vector machines.Expert Systems with Applications,2008,34(3):2013-2018.
  • 4Comak E,Arslan A.A new training method for support vector machines:clustering k-NN support vector machines.Expert Systems with Applications,2008,35(3):564-568.
  • 5Kulkarni A,Jayaraman V K,Kulkarni B D.Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process.Computers & Chemical Engineering,2005,29(10):2128-2133.
  • 6Chen W C,Wang M S.A fuzzy c-means clustering-based fragile watermarking scheme for image authentication.Expert Systems with Applications,2009,36(2):1300-1307.
  • 7Chen T.Incorporating fuzzy C-means and a back-propagation network ensemble to job completion time prediction in a semiconductor fabrication factory.Fuzzy Sets and Systems,2007,158(19):2153-2168.
  • 8Xu Q,Zhou H,Wang Y J,et al.Fuzzy support vector machine for classification of EEG signals using wavelet-based features.Medical Engineering & Physics,2009,31(7):858-865.
  • 9Lin C F,Wang S D.Training algorithms for fuzzy support vector machines with noisy data.Pattern Recognition Letters,2004,25(14):1647-1656.
  • 10杨海军,太雷.基于模糊支持向量机的上市公司财务困境预测[J].管理科学学报,2009,12(3):102-110. 被引量:43

二级参考文献23

  • 1诸克军,成金华,郭海湘.模糊软分类中最佳聚类数的确定[J].管理科学学报,2005,8(3):8-14. 被引量:15
  • 2王德全,林茂森.砷净液和锑净液除钴的进展[J].有色金属(冶炼部分),1995(4):9-11. 被引量:12
  • 3石晓军,肖远文,任若恩.Logistic违约率模型的最优样本配比与分界点研究[J].财经研究,2005,31(9):38-48. 被引量:49
  • 4胡援成,田满文.上市公司财务困境预测模型的再比较[J].经济学(季刊),2005,4(B10):173-188. 被引量:9
  • 5Beaver W. Financial ratios as predictors of failure, empirical research in accounting: Selected studies [ J ]. Journal of Accounting Research, 1966, Suppl(5) : 71-111.
  • 6Ahman E. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy [ J ]. The Journal of Finance, 1968, 23(4): 589-609.
  • 7Altman E, Haldeman R, Narayanan P. Zeta analysis: A new model to identify bankruptcy risk of corporations [ J]. Journal of Banking and Finance, 1977, ( 1 ) : 29-54.
  • 8Martin D. Early warning of bank failure: A logistic regression approach [ J ]. Journal of Banking and Finance, 1977, (1) : 249-276.
  • 9Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18 ( 1 ) : 109-131.
  • 10Franco V. Genetic algorithms applications in the analysis of insolvency risk [J]. Journal of Banking & Finance, 1998, (22) : 1421-1439.

共引文献63

同被引文献32

  • 1马忠林,赵旭东.基于经验的铝电解生产专家系统[J].轻金属,2006(2):33-35. 被引量:3
  • 2] Bckman O, stvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes. Hydro- metallurgy, 2000,54 ( 2 ) :65-78.
  • 3Suykens J, Vandewalle J. Least squares support vector machine Classifiers. Neural Processing Letters, 1999,19 ( 3 ) : 293-300.
  • 4Esen H, Ozgen F, Esen M. Modeling of a new solar air heater through least squares support vector machine. Ex- pert Systems with Applications, 2009, 36 ( 7 ) : 10673- 10682.
  • 5Zhao J, Zhang X P, Wang W. Gradient optimized LSS- VM for prediction of gas consumption in steel industry. ICIC Express Letters, 2011,4 (6) :2069-2073.
  • 6Zhen C, Yi H. Modeling and simulation of the GA-LSS- VM-based soft measurement for torque. Applied Mechan- ics and Materials, 2010,45 ( 1 ) :733-737.
  • 7Chappelle 0, Vapnik V, Bousquet O. Choosing multiple parameters for support vector machines. Machine Learn- ing, 2002, 46( 1 ) : 131-160.
  • 8Jari N. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process. Hydromet- allurgy, 2004,73 ( 1 ) : 123-132.
  • 9Sakiohi G. Purification of zinc leaching solution: Mecha- nism of removal of cobalt by zinc dust with arsenious ox- ide and copperion. Metallurgical review of MMJJ, 1997, 14( 1 ) :37-52.
  • 10Jacob C, Cohen P. Applied Multiple Regression/Correla-tion Analysis for the Behavioral Sciences (Third Edi- tion). Lawrence Erlbaum Associates, New Jersey, American, 2003.69-71.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部