期刊文献+

改进粒子群优化算法在GM(1,1,λ)模型上的应用 被引量:3

Application of improved particle swarm optimization algorithm on gray model GM(1,1,λ)
下载PDF
导出
摘要 提出了一种带有动态自适应惯性权重和随机变异策略的粒子群优化算法.在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性。当用早熟判断机制判断算法陷入早熟收敛时,采用随机变异策略使其跳出局部最优。将改进的算法应用于GM(1,1,λ)模型的求解,具体实例表明改进的粒子群优化算法能够显著提高GM(11,λ)模型的精度。 This paper proposes a new adaptive particle optimization algorithm with dynamic adaptive inertia weight and random mutation.During the running time,the inertia weight is determined by the particle's fitness that makes the algorithm become dynamical and adaptive.By judging the local convergence,when the algorithm gets into the local convergence,it can start random mutation.The improved algorithm is applied to solve the gray model GM(1,1,λ),experiments on concrete examples show that the modified algorithm has strongly improved the calculation accuracy of gray model GM(1,1,λ).
作者 朱晓曦 张潜
机构地区 华侨大学商学院
出处 《计算机工程与应用》 CSCD 北大核心 2010年第32期44-47,共4页 Computer Engineering and Applications
基金 霍英东教育基金(No.104009)
关键词 GM(1 1 λ)模型 粒子群优化 动态自适应惯性权重 随机变异算子 gray model GM(1,1,λ); particle swarm optimization; dynamic adaptive inertia weight; random mutation operator;
  • 相关文献

参考文献15

二级参考文献37

共引文献1125

同被引文献31

  • 1向跃霖.废气排放量灰色建模新法初探[J].环境科学研究,1995,8(6):45-48. 被引量:26
  • 2龚谊承,李寿贵,李德宜,尹水仿,赵喜林.基于小波的中国汽车产量预测与研究[J].武汉科技大学学报,2006,29(6):628-630. 被引量:2
  • 3Babaei M.A general approach to approximate solutions of nonlinear differential equations using particle swarm optimization[J].Applied Soft Computing Journal,2013,13 (7):3354-3365.
  • 4Bo Jiang,Ning Wang,Liping Wang.Particle swarm optimization with age-group topology for multimodal functions and data clustering[J].Communications in Nonlinear Science and Numerical Simulation,2013,18 (11):3134-3145.
  • 5Reza Toushmalani.Gravity inversion of a fault by Particle swarm optimization (PSO)[J].SpringerPlus,2013,2(1):1-7.
  • 6Mehdi Neshat.FAIPSO:fuzzy adaptive informed particle swarm optimization[J].Neural Computing and Applications,2013,23(1):95-116.
  • 7Waleed Al-Saedi,Stefan W.Lachowicz,Daryoush Habibi etal.Voltage and frequency regulation based DG unit in an autonomous micro grid operation using Particle Swarm Optimization[J].International Journal of Electrical Power and Energy Systems,2013,53:742-751.
  • 8张岐山.提高灰色GM(1,1)模型精度的微粒群方法[J].中国管理科学,2007,15(5):126-129. 被引量:44
  • 9Jason W, Osborne. Prediction in multiple regression [J]. Practical Assessment, Research & Evaluation, 2000, 7 (2), Report number: ISSN- 1531-7714.
  • 10Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50:159-175.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部