期刊文献+

HT-LSM的欠定混合盲信号分离方法的研究 被引量:2

Algorithm based on HT-LSM for underdetermined blind source separation
下载PDF
导出
摘要 利用Hough变换可以检测观测空间中的直线方向从而确定混叠矩阵的方法,提出了欠定盲源分离中估计混叠矩阵的一种新算法——HT-LSM算法。该算法在介绍欠定盲信号分离基本原理的基础上,介绍基于Hough变换的盲信道估计算法,并将改进后的Hough变换与最小二乘法相结合,在不影响检测结果速度的同时又进一步提高了检测精度,应用到欠定语音信号分离中,取得了良好的实验效果。 Hough Transform which is always used in image processing,turns the detection of the direction to the peak point detection in transform space in order to estimate the mixed matrix.This method is a new algorithm--HT-LSM algorithm.The paper firstly introduces blind mixing model recovery with Hough Transform,then combines the improved Hough Transform and least-squares method,it comes out to improve the speed and the accuracy at the same time.This method is applied to underdetermined speech signal separation,and achieves good effect of the experiment.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第32期133-136,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60672049)~~
关键词 欠定盲信号分离 HOUGH变换 最小二乘法 underdetermined blind source separation; Hough transformation; least square method;
  • 相关文献

参考文献2

二级参考文献7

共引文献66

同被引文献34

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 3冶继民,张贤达,金海红.超定盲信号分离的半参数统计方法[J].电波科学学报,2006,21(3):331-336. 被引量:7
  • 4Common P.Independent component analysis, a new con- cept?[J].Signal Processing, 1994,36 :: 287-314.
  • 5Pham D T, Cardoso J F.Blind separation of instantaneous mixtures of nonstationary sources[J].IEEE Transactions on Signal Processing,2001,49(9) : 1837-1848.
  • 6Yong H H, Amari S.Adaptive on-line learning algorithm for blind separation: maximum entropy and minimum mutual information[J].Neural Computation, 1997,7: 1457-1482.
  • 7Lee T W, Girolami M, Sejnowski T J.Independent com- ponent analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources[J].Neural Computation, 1999, 11 (2) : 417-441.
  • 8Boscolo R, Pan H,Vwani P R.Independent component analysis based on nonparametric density estimation[J]. IEEE Transactions on Neural Networks, 2004, 15 (1): 154-161.
  • 9Novey M,Adal T.Complex zation[J].IEEE Transactions 19(4) : 596-609.
  • 10ICA by negentropy maximi- on Neural Networks, 2008, Li W Q, Zhang H B, Zhao F.Independent component analysis using multilayer networks[J].IEEE Signal Process- ing Letters, 2007,14( 11 ) : 856-858.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部