期刊文献+

基于投影和主成分分析的偏心检测 被引量:2

Eccentricity measurement based on projection and principal component analysis
下载PDF
导出
摘要 在生产实践中,管类工件的内部结构之中常常存在微小的偏心误差。偏心误差对工件的工作性能影响很大,因此,能否准确、快速地检测出偏心误差在生产实践中意义重大。本文介绍了一种基于投影数据和主成分分析的偏心检测方法。截取工件中任意两个截面,利用Radon变化求得它们在一定投影角度下的投影。分别计算投影的第一主成分,并以第一主成分之间的欧氏距离表征偏心误差。如果欧氏距离不等于零,则证明工件存在偏心误差。通过仿真实验证明该方法能检测出0.1%的微小偏心,并且抗噪性能较好。 In the productive practice,the internal structures of pipe parts and pipe products often have minimal eccentric error. Eccentric error gets great effect to the performance of workpiece. It is important to measure the eccentric error exactly and fast in the productive practice. This paper introduces a kind of methods to measure eccentric error,which based on projection data and principal component analysis. Intercept any two sections of workpiece,and collect their projection date from Radon transformation. Compute the first principal components of projection respectively,then use Euclidean distance to characterize the eccentric error. If the Euclidean distance is not equal to zero,the workpiece exist eccentric error. The simulation experiment proves that this method can test minimal eccentric error of 0.1%,and it has good anti-noise performance.
作者 高欣
出处 《电子测试》 2010年第10期19-22,46,共5页 Electronic Test
关键词 投影 主成分分析 偏心检测 projection Principal Component Analysis Eccentricity Measurement
  • 相关文献

参考文献8

  • 1方开泰,张尧庭.多元统计分析引论[M].北京:科学出版社,1982.
  • 2Wold S.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systerns,19872,(1-3):37-52.
  • 3Soumya Raychaudhuri,Joshua M.Stuart,Russ B.Altman.PRINCIPAL CDNPONENTS ANALYSIS TO SUMMARIZE MICROARRAY EXPERIMENTS:APPLICATION TO SPORULATION TIME SERIES[J].Pac Symp Biocomput,2000:455-466.
  • 4I.TJolliffe.Principal Components Analysis[M].New York:Vedag New York.Inc.2002:Secend Edition.
  • 5Marian Stewart Bartlett,Javier R.Movellan,Terrence J.Sejnowski.Face Recognition by Independent Component Analysis[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,2002,13(6):1450-1464.
  • 6胡永刚,吴翊,卜江.基于加权PCA的声音指纹降维技术[J].计算机应用,2006,26(9):2250-2254. 被引量:5
  • 7钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998. 被引量:30
  • 8郑磊,余桐奎,韩宇亮.振动噪声特征的主成分分析方法应用研究[J].舰船电子工程,2009,29(2):184-187. 被引量:5

二级参考文献27

  • 1李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134. 被引量:24
  • 2朱永宣,单莘,郭军.入侵检测系统中基于主成份分析特征提取研究[J].微电子学与计算机,2006,23(7):90-92. 被引量:8
  • 3M.W-S.CHO,K-J.KIM.Indirect input identification in multi-source en-vironments by principal component analysis[J].Mechanical Systems and Signal Processing,2002,16(5)
  • 4Singh A.Digital change detection techniques using remotely sensed data[J].Int.J.Remote Sensing,1989,10 (6):989-1003.
  • 5Jensen J R.Introductory Digital Image Processing:A Remote Sensing Perspective[M].New Jersey,Prentice Hall,1996.
  • 6Bruzzone L,Prieto D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Trans.on Geosci.Remote Sensing,2000,38 (3):1171-1182.
  • 7Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis[M],New York:Wiley,2001.
  • 8Fran J,Cardoso C.Blind signal separation:statistical principles[J].Proc.IEEE,1998,86 (10):2009-2025.
  • 9Chang C I,Chiang S S,J.Smith A,Ginsberg I W.Linear spectral random mixture analysis for hyperspectral imagery[J].IEEETrans.on Geosci.Remote Sensing,2002,40 (2):375-392.
  • 10Jenssen R,Eltoft T.Independent component analysis for texture segmentation[J].Pattern Recognition,2003,36:2301-2315.

共引文献41

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部