摘要
近几年,国内外学者利用一步粘性序列,得到了Banach空间中强收敛到非扩张映像不动点的条件。而非扩张映像一定是渐近非扩张映像。引入渐近非扩张映象的具误差的两步粘性迭代序列,采用迭代和不等式技巧和方法,得出了Banach空间中渐近非扩张映象的具误差的两步粘性迭代序列的收敛性及强收敛于其不动点的条件。进而改进和推广了最新的结果。
In recent years,the conditions for strong convergence to the fixed points of the non-expansive mappings in Banach space have been obtained by using of the one-step viscosity iterative sequences.However,the non-expansive mapping is an asymptotically non-expansive mapping.The convergence and conditions for strong convergence to the fixed points have been obtained for the two-steps viscosity iterative sequences with errors of asymptotically non-expansive mappings in real Banach space by introduction of the two-steps viscosity iterative sequences with errors of asymptotically non-expansive mappings,using error iteration and technique methods of inequality.Some latest results has been improved and promoted.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2010年第5期573-576,581,共5页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(10571113)
西安文理学院科研基金资助项目(kyc200818)
关键词
实BANACH空间
渐近非扩张映象
具误差的粘性迭代序列
不动点
real Banach space
asymptotically non-expansive mappings
viscosity iterative sequences with errors
fixed point