期刊文献+

渐近非扩张映象的具误差的粘性迭代逼近 被引量:5

Viscosity iterative sequences with errors of asymptotically nonexpansive mappings
下载PDF
导出
摘要 近几年,国内外学者利用一步粘性序列,得到了Banach空间中强收敛到非扩张映像不动点的条件。而非扩张映像一定是渐近非扩张映像。引入渐近非扩张映象的具误差的两步粘性迭代序列,采用迭代和不等式技巧和方法,得出了Banach空间中渐近非扩张映象的具误差的两步粘性迭代序列的收敛性及强收敛于其不动点的条件。进而改进和推广了最新的结果。 In recent years,the conditions for strong convergence to the fixed points of the non-expansive mappings in Banach space have been obtained by using of the one-step viscosity iterative sequences.However,the non-expansive mapping is an asymptotically non-expansive mapping.The convergence and conditions for strong convergence to the fixed points have been obtained for the two-steps viscosity iterative sequences with errors of asymptotically non-expansive mappings in real Banach space by introduction of the two-steps viscosity iterative sequences with errors of asymptotically non-expansive mappings,using error iteration and technique methods of inequality.Some latest results has been improved and promoted.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期573-576,581,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10571113) 西安文理学院科研基金资助项目(kyc200818)
关键词 实BANACH空间 渐近非扩张映象 具误差的粘性迭代序列 不动点 real Banach space asymptotically non-expansive mappings viscosity iterative sequences with errors fixed point
  • 相关文献

参考文献3

二级参考文献41

  • 1张石生,田有先.关于Halpern的公开问题[J].数学学报(中文版),2005,48(5):979-984. 被引量:5
  • 2Deimling K., Nonlinear functional analysis, Berlin: Springer-Verlag, 1985.
  • 3Goebel K., Kirk W. A., Topies in metric fixed point theory,in Cambridge Studies in Advanced Mathematics,V. 28, Cambridge: Cambridge Univ. Press, 1990.
  • 4Goebel K., Reich S.,Uniform convexity, nonexpansive mappings and hyperbolic geometry, Dekker, 1984.
  • 5Moudafi A., Viscosity approximation methods for fixed poin problems,J. Math. Anal.Appl., 2000, 241:46-55.
  • 6Browder F. E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal., 1967, 24: 82-90.
  • 7Xu H. K., Viscosity approximation methods for nonexpansive mappings,J. Math. Anal. Appl., 2004, 298:279-291.
  • 8Reich S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 1980, 75: 128-292.
  • 9Halpern B., Fixed points of nonexpansive maps, Bull. Amer. Math. Soc.,1967, 73: 957-961
  • 10Lio;ls P. L., Approximation de points fixes de contractions,C. R. Acad. Sci. Paris, Ser. A, 1977, 284:1357-1359.

共引文献14

同被引文献40

  • 1彭凤平,黄金平,戴敏.有限个λ半压缩映象族的强收敛定理[J].重庆师范大学学报(自然科学版),2011,28(5):37-40. 被引量:1
  • 2冉凯.Banach空间中渐近非扩张映象迭代序列的强收敛性[J].纺织高校基础科学学报,2005,18(2):120-122. 被引量:3
  • 3张石生.Banach空间中非扩张映象的黏性逼近方法[J].数学学报(中文版),2007,50(3):485-492. 被引量:13
  • 4CHANG S S,JOSEPH H W,CHAN Chikin. On Reichts strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces[J]. Nonlinear Anal,2007,66:2 364-2 374.
  • 5LIU L S. Ishikawa and mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces[J]. J Math Anal Appl, 1995,194: 114-125.
  • 6CHANG S S, On Chidume's open questions and approximation solutions of multi valued strongly accretive mappings equations in Banaeh spaee[J]. J Math Anal Appl, 1997,216:94-111.
  • 7Gu G D, Wang S H, Cho Y J. Strong convergence algorithms for hierarchical fixed points problems and variational inequalities[ J]. J Appl Math, 2011,2011 : 164978.
  • 8Yao Y H, Cho Y J, Liou Y C. Iterative algorithms for hierarchical fixed points problems and variational inequalities [ J ]. Math Comput Model,2010,52(9/10) :1697 -1705.
  • 9Moudafi A. Krasnoselski - Mann iteration for hierarchical fixed - point problems [ J ]. Inverse Problems ,2007,23 (4) : 1635 - 1675.
  • 10Maing P E, Moudafi A. Strong convergence of an iterative method for hierarchical fixed -point problems[ J ]. Pacific J Optim, 2007,3(3) :529 -538.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部