摘要
研究如下一类非自治二阶Hamilton系统ü(t)=F(t,u(t))+e(t),a.e.t∈[0,T],u(0)-u(T)=u.(0)-u.(T)=0。将非线性项分为自治或非自治两部分,在满足部分周期,线性,次线性及其他一些限制条件,应用临界点理论中的极小极大原理,证明周期解的多重存在性,获得了一些有意义的结果。
The following non-autonomous second order Hamiltonian system{üD(t)=F(t,u(t))+e(t),a.e.t∈,u(0)-u(T)=u·(0)-u·(T)=0.is considered.The nonlinearity is assumed to divide into automous and non-automous parts and satisfies some periodicity,linearity,sub-linearity and other conditions.Under these assumptions,some meaningful results on the existence and multiplicity of periodic solutions are obtained by using minimax priciple in critical point theory.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2010年第5期596-602,共7页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(10771215)