期刊文献+

二阶非自治Hamilton系统多周期解的存在性

Existence of multiple periodic solutions for non-automous second order Hamiltonian systems
下载PDF
导出
摘要 研究如下一类非自治二阶Hamilton系统ü(t)=F(t,u(t))+e(t),a.e.t∈[0,T],u(0)-u(T)=u.(0)-u.(T)=0。将非线性项分为自治或非自治两部分,在满足部分周期,线性,次线性及其他一些限制条件,应用临界点理论中的极小极大原理,证明周期解的多重存在性,获得了一些有意义的结果。 The following non-autonomous second order Hamiltonian system{üD(t)=F(t,u(t))+e(t),a.e.t∈,u(0)-u(T)=u·(0)-u·(T)=0.is considered.The nonlinearity is assumed to divide into automous and non-automous parts and satisfies some periodicity,linearity,sub-linearity and other conditions.Under these assumptions,some meaningful results on the existence and multiplicity of periodic solutions are obtained by using minimax priciple in critical point theory.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期596-602,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10771215)
关键词 二阶非自治HAMILTON系统 多周期解 极小极大原理 (PS)G条件 non-automous second order Hamiltonian systems multiple periodic solution minimax principle (PS)G condition
  • 相关文献

参考文献8

  • 1MAWHIN J, WILLEM M. Critical point theory and Hamiltonian systems [ M ]. Berlin : Springer-Verlag, 1989.
  • 2CHANG K C. On the periodic nonlinerity and the multiplicity of solution[ J]. Nonlinear Anal, 1989, 13 (5) :527 -537.
  • 3LIU J Q. Generalized saddel point thorem[ J]. J Differential Equations, 1989,82:327 -385.
  • 4MAWHIN J. Noniner oscillations, one hundred years after Liapunov and Poincare [ J]. Z Angew Math, 1993,73 (4 -5 ) :54 -62.
  • 5RABINOWITZ P H. On a class of functions invariant under a Zn action[ J]. Trans Amer Math Soc, 1988, 310 (1) :303 -311.
  • 6WU Xing-ping. Periodic solution for nonautonomous second-order systems with bounded nonlinearity[J]. J Math Anal Appl, 1999,230( 1 ) :135 -141.
  • 7MA Jian, TANG C L. Periodic solutions for some nonautonomous second-order systems[J]. J Math Anal Appl, 2002,275:482 -494.
  • 8TANG C L, WU Xing-ping. Periodic solution for second-order systems with not uniformly coercive potential[ J]. J Math Anal Appl,2001,259 (1) :386 -387.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部