期刊文献+

三元离散神经网络模型的稳定性与分岔 被引量:4

Stability and bifurcation of a three-dimension discrete neural network model
下载PDF
导出
摘要 研究一类三元神经网络模型。运用离散动力系统Hopf分支理论和扩展的July判据理论对该模型的特征方程根的分布进行分析,研究该模型的平衡点的稳定性和分岔,利用中心流形定理和正规形方法,给出确定分支周期解的分支方向与稳定性的计算公式。数值模拟验证了所得结果的正确性。 A Three-dimension discrete neural network model is considered.The linear stability of the model is studied.It is found that there exists Hopf bifurcations when the parameter passes a sequence of critical values.Using the normal form method and the center manifold theorem,the explicit formulas which determine the direction of the Hopf bifurcations and the stability of bifurcating periodic solutions are derived.Finally,computer simulations are performed to support the theoretical predict.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期659-663,共5页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省博士后基金资助项目
关键词 离散神经网络 平衡点 稳定性 HOPF分支 中心流形 discrete neural network model equilibrium stability Hopf bifurcation center manifold
  • 相关文献

参考文献4

  • 1GUO S, HUANG Y, WANG L. Linear stability and Hopf bifurcation in a two - neuron network with three delays [ J ]. Int J Bifur Chaos, 2004,14 : 2799 - 2810.
  • 2ZHANG Chun - rui, ZHENG Bao -dong. Stability and bifurcation of a two - dimension discrete neural network model with multi - delays [ J ]. Chaos, Solitons and Fractals, 2007,31 : 1232 - 1242.
  • 3ZHENG Bao -dung, LIANG Li -jie, ZHANG Chun -rui. Extended jury criterion [ J ]. Science in China Series A: Mathematics, 2009,39 (10) : 1133 - 1150.
  • 4YURI A K. Elements of applied bifurcation theory[ M I. New- York: Springer- Verlag, 1995.

同被引文献46

  • 1吕堂红.双时滞物价瑞利方程的Neimark-Sacker分支[J].中北大学学报(自然科学版),2012,33(5):490-494. 被引量:2
  • 2ZHENG BaoDong 1,LIANG LiJie 1 & ZHANG ChunRui 2 1 Department of mathematics,Harbin Institute of Technology,Harbin 150001,China,2 Department of mathematics,Northeast Forestry University,Harbin 150040,China.Extended Jury criterion[J].Science China Mathematics,2010,53(4):1133-1150. 被引量:4
  • 3邓祥周,田立新,段希波.能源价格的动态模型及分析[J].统计与决策,2007,23(2):9-10. 被引量:15
  • 4Cho Youngsang, Lee Jong su, Kim Taiyoo.The im- pact of ICT investment and energy price on indus- trial electricity demand: dynamic growth model ap- proach [ J ].Energy Policy, 2007,35 (9) : 4730-4,738.
  • 5Adeyem i,Olutom i I, Hunt Lester C. Modelling OECD industrial energy demand: asymmetric price responses and energy saving technical change[J].En- ergy Economics, 2007,29(4) 693-709.
  • 6Zhang C R, Zheng B D.Stability and Bifurcation of a two-di-mension Discrete Neural Network Model with Multi-delays [J].Chaos, Solitons and Fractals, 2007,31 1232-1242.
  • 7Zheng Baodong, Liang Lijie, Zhang Chunru.i Ex- tended jury criterion[J].Science in China SeriesAMathematics, 2009,39 (10) : 1133-1150.
  • 8Guo S J, Tang X H, Huang L H. Stability and Bifurcation in Discrete System of Two Neurons with Delaysp [J].Nonlinear Analysis: Real World Applications, 2008, (9) : 1323-1335.
  • 9Lambert J D. Numerical method for ordinary dif- ferential equations[M].Chiehester:John Wiley,1991.
  • 10Ioossg.Bifureationof maps and applications [M]. New York: Nortlr Holland Pubilshing Company, 1979 : 15-150.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部