期刊文献+

Z(_p^2)上长度为p^kn的重根循环码的对偶码

The duals of cyclic codes of length p^kn over Z_(p^2)
下载PDF
导出
摘要 近年来,Z4上的循环码及其对偶码的研究为编码理论的进一步研究提供了很多有用的结果。S.T.Dougherty利用Mattson-Solomon多项式研究了Z4上的循环码及其对偶码的一些性质,在此基础上利用Mattson-Solomon多项式研究了环Zp2上长度为pkn的循环码的对偶码的生成多项式,得到了其上自对偶循环码的一些性质,并给出了某些自对偶码的生成多项式的充要条件。 Recently,the study of cyclic codes over Z4 and theirs duals have provided many useful results for coding theory.S.T.Dougherty has used Mattson-Solomon polynomial to study the cyclic codes and theirs duals.Thereby,the generators of the duals of cyclic codes of length pkn over Zp2 are derived by using the Mattson-Solomon polynomial.And some properties of self-dual cyclic codes are also obtained.
作者 张菁韡
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期681-687,共7页 Journal of Natural Science of Heilongjiang University
关键词 循环码 对偶码 自对偶码 cyclic codes dual codes self-dual codes
  • 相关文献

参考文献7

  • 1CALDERBANK A R, SLOANE N J A. Modular and p-adic cyclic codes[J]. Designs,Codes and Cryptogr, 1995(6) :21 -25.
  • 2NECHAEV A A. Kcrdock code in a cyclic form[ J ]. Diskretnaya Mat, 1989 (4) :123 -139.
  • 3HAMMONS A R, KUMAR P V, CALDERBANK A R, et al. The Z4-1inearity of kerdock, preparata, goethals, and related codes[ J ]. IEEE Trans Inform Theory,1994, 40(2) : 301 -319.
  • 4KANWAR P, LOPEZ-PERMAUTH S R. Cyclic codes over the integers modulo Zpm [ J]. Finite Fields and Their Appl, 1997 (3) : 334 -352.
  • 5DOUGHERTY S T, LING S. Cyclic codes over Z4 of even length[J]. Design, Code and Cryptography, 2006, 39(2) : 127 - 153.
  • 6王冬银,朱士信,开小山.Zp^2上长度为pn的循环码[J].中国科学技术大学学报,2008,38(5):481-487. 被引量:1
  • 7MCDONALDS B R. Finite rings with identity[ M]. New York:Marcel Dekker, 1974.

二级参考文献6

  • 1Calderbank A R, Sloane N T A. Modular and p-adic cyclic codes [J]. Designs, Codes and Cryptography, 1995, 6: 21-35.
  • 2Pless V S, Qian Z. Cyclic codes and quadratic residue codes over Z4[J]. IEEE-IT, 1996,42(5) :1 594-1 600.
  • 3Abualrub T, Oehmke R. On the generators of Z4 cyclic codes of length 2^e[J]. IEEE-IT, 2003, 49(9) : 2 126- 2 133.
  • 4Blackford T. Cyclic codes over Z4 of oddly even length[J]. Discrete Applied Mathematics, 2003, 128: 27-46.
  • 5Dougherty S T, Ling S. Cyclic codes over Z4 of even length[J]. Designs, Codes and Cryptography, 2006, 39(2) : 127-153.
  • 6Dougherty S T, Park Y H. On modular cyclic codes [J]. Finite Fields and Their Applications, 2007, 13: 31-57.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部