摘要
提出自适应因子和轨道延拓相结合的二维流形计算方法,利用以平衡点为中心的椭圆对局域流形的近似,通过轨道的等距延拓和椭圆初始点的自适应调节,在精度要求下自适应的添加轨道,完成二维双曲不变流形的计算.此方法比"轨道弧长法"精度高,包含更多细节信息;同时要比"盒子细分法"更能反映流形的延拓趋势.
Most work on manifold study focuses on two-dimensional manifolds and there have been proposed some good computing methods.However,the computation of two-dimensional manifold is still a hot research field.In this paper the two-dimensional manifold of hyperbolic equilibria for vector fields is computed by combining self-adaptive parameter with trajectories continuation,approximating the local manifold with an ellipse around the equilibria,extending the trajectory with equal distance,and adjusting the trajectory with self-adaptive parameter.This method is more accurate than the "trajectories and arc-length method",and better shows the trend of the manifolds than the"box covering method".
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2010年第11期7686-7692,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:60872159)资助的课题~~
关键词
自适应因子
轨道延拓
流形
非线性系统
self-adaptive parameter
trajectories continuation
manifolds
non-liner system