期刊文献+

无磁芯复位电路的磁脉冲压缩系统的研制 被引量:3

Development of a New Magnetic Pulse Compression System Without External Remagnetization Circuits
下载PDF
导出
摘要 为减小磁开关的体积、提高磁脉冲压缩的能量传递效率和频率,分析了基于省去磁芯复位电路的磁脉冲压缩系统的工作原理,结合磁开关的工作特性,设计出一种新型的单级磁脉冲压缩拓扑结构,它省去了磁芯复位电路且结构上更加简单、紧凑;并详细介绍了磁脉冲压缩装置的工作原理,通过理论计算给出了此装置关键元件的参数;最后结合理论分析,实验研究了两种特性的磁脉冲压缩装置的不同特性;两种装置可以分别输出幅值为4.8kV、脉冲上升沿0.5μs和幅值为3.6kV、脉冲上升沿10μs的脉冲电压波形;实验结果分析表明:由于磁开关的特性,可使主回路气体开关实现零电流开通,有效减小了气体间隙的损耗,有利于提高气体开关的工作频率。 In order to reduce the volume of magnetic switch and to increase the energy transfer efficiency and frequency of magnetic pulse compression(MPC),the principle of a magnetic pulse compression system without external remagnetization circuits was analyzed.A new kind of one-stage magnetic pulse compression system was designed based on the characteristic of magnetic switch;the new topology which did not contain external remagnetization circuits was simpler and compact.The detailed operation of the MPC system was described,and the parameters of the key components of the magnetic switch were presented according to theoretical calculation.To well understand the principle of the MPC system,two MPC devices with different characteristics were experimentally studied,which could deliver 4.8kV and 3.6kV pulse waveforms with the pulse rise time of 0.5μs and 10μs,respectively.The experimental results show that the gas switch in the main loop of the MPC topology can realize zero-current closing approximately,and this performance can reduce the losses of the gas gap effectively and is helpful to increasing the working repetition of the gas switch.
出处 《高电压技术》 EI CAS CSCD 北大核心 2010年第10期2525-2530,共6页 High Voltage Engineering
关键词 脉冲功率技术 磁开关 磁脉冲压缩 气体开关 零电流闭合 气体间隙损耗 饱和 pulsed power technology magnetic switch magnetic pulse compression(MPC) gas switch zero-current closing gas gap losses saturable
  • 相关文献

参考文献7

二级参考文献75

共引文献70

同被引文献39

  • 1张伟.基于有限元法对亥姆霍兹线圈磁场的分析[J].西安文理学院学报(自然科学版),2009,12(3):77-80. 被引量:5
  • 2牛晓武,赵志龙,刘林.强脉冲磁场对Al-Cu共晶合金定向凝固组织的影响[J].热加工工艺,2006,35(1):4-6. 被引量:9
  • 3Glyavin M Y, Zhurin K A, Kopelovich E A, et al. A pulse magnetic field generator for terahertz gyro-devices[J]. Electronics and Radio Engineering, 2011, 54(1): 77-80.
  • 4Sachiko Yamaguchi, Mari Ogiue-Ikeda, Masaki Sekino, et al. Effects of pulsed magnetic stimulation on tumor development and immune functions in miee[J]. Bioelectromagnetic, 2006, 27(1): 64 72.
  • 5Yamaguchi S, Sato Y, Sekino M, et al. Combination effects of the repetitive pulsed magnetic stimulation and the anticanccr agent-imatinib on human leukemia cell line TCC-S[J]. IEEE Transactions on Magnetics, 2006, 42(10) : 3581-3583.
  • 6Yan Mi, Chenguo Yao, Chun Jiang, et al. A ns-μs duration, millitesla, exponential decay pulsed magnetic field generator for tumor treatment[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1111-1118.
  • 7梁可道.用于肿瘤治疗的陡脉冲磁场发生器的研制[D].重庆:重庆大学,2007.
  • 8Gottardi G, Mesirca P, Agostini C. A four coil exposure systern (tetracoil) producing a highly uniform magnetic field[J]. Bioelectromagnetics, 2003, 2(4): 125-133.
  • 9Ludke J, Ahlers H, Albrecht M, et al. Novel compensated moment detection coil[J]. IEEE Transactions on Magnetics, 2007, 43(9) : 3567-3572.
  • 10李春峰,于海平,刘大海.铝合金磁脉冲辅助板材冲压技术研究进展[J].中国机械工程,2008,19(1):108-113. 被引量:12

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部