期刊文献+

空分过程变量预测的多变量时间序列分析方法 被引量:1

Multivariate time series based variable prediction in air separation process
原文传递
导出
摘要 氮塞是空分过程的常见故障,粗氩塔冷凝器出口氩气含氩量是工业现场中指示氮塞是否发生的关键变量,对该变量进行准确的预测可以使氮塞故障的报警时间提前。本文采用多变量时间序列相空间重构的方法,建立了粗氩塔冷凝器出口氩气含氩量和其它过程变量之间的一步线性回归预测模型,以迭代方式获得多步预测的结果,并利用滑动窗口实现了模型参数的在线修正。通过某钢铁公司空分装置实际数据的建模与仿真,分析了相空间重构时嵌入维数以及预测步数的选取对最终预测结果的影响,即预测均方误差与嵌入维数成反比,与预测步数成正比。仿真结果同时表明,本文建立的模型能够较为准确地对空分过程关键变量进行预测,预测提前时间在4~5分钟之间。 Nitrogen blockage is a common fault in air separation process.The molecular volume component of argon in the outlet of the condenser in the crude argon column is often used as an indicator of nitrogen blockage.Accurate prediction of this variable is of great help to predict the occurrence of nitrogen blockage in advance.A predictive model based on the phase-space reconstruction of multivariate time series is presented in this paper.The one-step ahead predictive model is established by the least squares method and the multi-step ahead prediction results of the process variable are achieved iteratively via one-step ahead prediction.Moreover,an on-line updating of the model parameters is implemented by a moving window.The embedding dimension of the phase-space reconstruction and the steps ahead are analyzed based on the practical data from an industrial air separation process.Analysis shows that the mean square prediction error is inversely proportional to the embedding dimension of the phase-space reconstruction while derectly to the steps ahead.The simulation results also demonstrate that the proposed model can forecast the predicted process variable accurately,the predicted time could be between 4 and 5 minutes.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第10期1341-1344,共4页 Computers and Applied Chemistry
基金 国家高技术研究发展计划(863)(2009AA04Z159) 国家自然科学基金项目(40740420661和60974007) 浙江省自然科学基金项目(Y1080406) 中央高校基本科研业务费专项资金.
关键词 空分氮塞 变量预测 多变量时间序列分析 相空间重构 air separation process nitrogen blockage process variable prediction multivariate time series phase-space reconstruction
  • 相关文献

参考文献8

二级参考文献15

  • 1刘育明,梁军,钱积新.工业流化床反应器结块监视的动态PCA方法[J].化工学报,2004,55(9):1546-1549. 被引量:12
  • 2贺兴时,徐寅峰.相空间重构及其在经济预测中的应用[J].预测,1994,13(5):51-52. 被引量:7
  • 3彼得斯.资本市场的混沌与秩序[M].经济科学出版社,1999.62-64.
  • 4Takens F Mane. Detecting strange attractors in fluid turbulence[A]. Dynamical Systems and Turbulence[C].Berlin: Springer, 1981:21-80.
  • 5Hastings S P, Troy W C. A shooting approach to chaos in the Lorenz equations[J]. J of Differential Equations, 1996,127(1):41-53.
  • 6Cao Liangyue, Mees Alistair, Judd Kevin. Dynamics from multivariate time series[J]. Physica D, 1998,121(1-2):75-88.
  • 7Rosensrein M T, Collins J J, Luca C. Reconstruction expansion as a geometry-based framework for choosing proper delay time[J]. Physica D, 1994,73(1):82-89.
  • 8Fraser A M. Information and entropy in strange attractors[J]. IEEE Trans on IT, 1989,35(2):245-262.
  • 9Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed data in physical systems[J]. Rev Mod Phy, 1993,65(4):1331-1392.
  • 10叶中行,杨利平.上证指数的混沌特性分析[J].上海交通大学学报,1998,32(3):129-132. 被引量:30

共引文献35

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部