期刊文献+

基于贝叶斯网络的软测量建模方法 被引量:3

A soft sensor based on Bayesian network
原文传递
导出
摘要 软测量技术对化工生产过程中提高产品质量和保证安全生产具有重要的作用,因此对化工软测量建模方法的研究具有重要意义。本文将贝叶斯网络应用于化工软测量建模,采用高斯混合模型来近似表达贝叶斯网络模型中的联合概率分布,通过Expectation Maximization算法求解出高斯混合模型参数并给出了贝叶斯网络估计公式。应用此法分别对某炼油厂脱丁烷塔塔底丁烷含量和某双酚A生产过程中脱水塔出口组分苯酚含量建立了软测量模型,取得了良好的离线估计结果。仿真结果表明,与支持向量机相比,在估计精度相当的情况下,省去了许多过程参数的估计,是1种有效的软测量建模方法。 Soft sensor has played an important role in improving product quality and can ensure the safety of chemical production processes,therefore the investigation of soft-modeling method is very important.A new approach based on Bayesian network applied to chemical soft sensor is proposed. The joint probability distribution is approximated by gaussian mixture model in Bayesian network,and parameters of the Gaussian mixture model are obtained through the EM algorithm,and then the estimated formula for Bayesian network is been given.Two soft sensor models are respectively established with this method to estimate the C4 in the bottom of debutane tower and phenol at the outlet of Dehydration Tower.And the models based on Bayesian network show good results.Compared with support vector machine,the Bayesian network eliminates a number of the process parameters estimation and has considerable accuracy.It is an effective method for soft sensor modeling.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第10期1391-1394,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(No.60674092) 江苏省高技术研究项目(工业部分)(No.BG2006010) 江南大学创新团队发展计划资助项目.
关键词 贝叶斯网络模型 软测量技术 建模方法 化工生产过程 高斯混合模型 联合概率分布 估计公式 脱丁烷塔 Bayesian network gaussian mixture model EM algorithm support vector machine
  • 相关文献

参考文献2

二级参考文献22

共引文献27

同被引文献38

  • 1马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519. 被引量:27
  • 2刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 3仲卫进,艾芊.扩展卡尔曼滤波在动态负荷参数辨识中应用[J].电力自动化设备,2007,27(2):47-50. 被引量:18
  • 4Fortuna L, Graziani S, Rizzo A, Xibilia M G. Soft Sensors forMonitoring and Control of Industrial Processes [M]. Springer, 2007.
  • 5Yu Jinshou (俞金寿), Liu Ailun (刘爱伦), Zhang Kejin(张克进). SoftSensor Technology in Petrochemical Industry Application (软测量技术及其在石油化工中的应用) [M]. Beijing: Petrochemical Press,2000: 1-10.
  • 6Lin B, Recke B, Knudsen J K H, J?rgensen S B. A systematicapproach for soft sensor development [J]. Computers & ChemicalEngineering, 2007, 31(5): 419-425.
  • 7Kano M, Nakagawa Y. Data-based process monitoring, process control,and quality improvement: recent developments and applications in steelindustry [J]. Computers & Chemical Engineering, 2008, 32(1): 12-24.
  • 8Sliskovic D, Grbic R, Hocenski Z. Methods for plant data-basedprocess modeling in soft-sensor development [J]. Automatika, 2012,52(4): 306-318.
  • 9Kadleca P, Gabrysa B, Strandt S. Data-driven soft sensors in theprocess industry [J]. Computers & Chemical Engineering, 2009,33(4): 795-814.
  • 10Pan T H, Wong D S H, Jang S S. Development of a novel soft sensorusing a local model network with an adaptive subtractive clusteringapproach [J]. Industrial & Engineering Chemistry Research, 2010,49(10):4738-4747.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部