期刊文献+

脯氨酸分子构象的双空间分析 被引量:1

Conformational processes in proline studied using dual space analysis
下载PDF
导出
摘要 本文主要讨论了脯氨酸分子最稳定的四种构象的束缚能谱和轨道电子动量分布.计算出的几何构型和偶极矩等分子特征与以前的实验和理论计算结果均很好的符合.双空间分析就是用基于B3LYP/TZVP密度泛函计算出的位置空间来研究其束缚能谱,用基于平面波近似下的动量空间来研究其价壳层轨道电子动量分布,并从构象之间的转换来解释不同构象轨道(HOMO:31a,NHOMO:30a和HOMO-2:29a)波函数差异. In this paper, binding energy spectra and orbital momentum distributions of the four most stable conformers of Proline are investigated. Molecular properties such as geometry and dipole moments agree well with available experimental and previous theoretical investigations. Dual space analysis is employed to study the binding energy spectra in coordinate space based on B3LYP/TZVP density functional calculations and the valence orbital momentum distributions based on the plane wave impulse approximation, this momentum distributions is compared to the distributions of electronic densities of the four conformers. In the valence space, the HOMO (31a), NHOMO (30a) and orbital 29a are selected to study the conformational processes in Proline.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2010年第5期807-812,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10734040) 河南师范大学博士科研启动基金(525449)
关键词 脯氨酸 构象 电子动量分布 偶极矩 proline, conformers, electron momentum distribution, dipole moment
  • 相关文献

参考文献19

  • 1Sapse A M, Mallah-levy L, Daniels S B, etal. The γ turn: ab initio calculations on proline and n-acetylproline amide[J]. J. Am. Chem. Soc., 1987, 109: 3562.
  • 2Tarakeshwar P, Manogaran S. Proline and hydroxyproline Zwitterions-an abinitio study[J]. J. Mol. Struct: Theochem., 1996, 365:167.
  • 3Csaszar A G, Perczel A. Ab initio characterization of building units in peptides and proteins[J]. Prog. Biophys. Mol. Biol., 1999, 71:243.
  • 4Lesarri A, Mata S, Cocinero E J, et al. The structure of neutral proline[J]. Angew. Chem. Int. Ed. , 2002, 41:4673.
  • 5Tian S X, Yang J L. Effects of intramolecular hydrogen bonding on the ionization energies of proline[J]. Angew. Chem. Int. Ed. , 2006, 45: 2069.
  • 6Tian S X, Yang J L. Effects of intramolecular hydrogen bonding on the ionization energies of proline[J]. Angew. Chem. Int. Ed. , 2006, 45:2069.
  • 7Deleuze M S, Pang W N, Salam A, et al. Probing mlecular conformations with electron momentum spectroscopy: the case of n-butane[J]. J. Am. Chem. Soc., 2001, 123:4049.
  • 8Downton M, Wang F. Chemical bonding mechanisms of n-butane probed by the core orbital of conforma- tional isomers in r-space and k-space [J]. Chem. Phys. Lett. , 2004, 384:144.
  • 9Wang F, Downtion D. Inner valence shell bonding mechanism of n-butane studied using orbital momentum distributions of its conformations isomers[J]. J. Phys. B: At. Mol. Opt. Phys., 2004, 37:557.
  • 10Wang F, Pang W N, Huang M. Valence space electron momentum spectroscopy of diborane[J]. J. Electon. Spectrosc. Relat. Phenom , 2006, 151: 215.

二级参考文献57

  • 1[2]Brion C E,Cooper G,Zheng Y,et al.Imaging of orbital electron densities by electron momentum spectroscopy -a chemical interpretation of the binary (e,2e) reaction[J].Chem.Phys.,2001,270(1):13
  • 2[3]Bawagan A O,Brion C E,Davidson E R,et al.Electron momentum spectroscopy of the valence orbitals of H2O and D2O:Quantitative comparisons using Hartree-Fock limit and correlated wavefunctions[J].Chem.Phys.,1987,113(1):19
  • 3[4]Brunger M J,McCarthy I E,Weigold E.High-resolution electron-momentum spectroscopy of argon:Validation of technique and approximations[J].Phys.Rev.A,1999,59(2):1245
  • 4[5]Brion C E,Young J B,Litvinyuk I V,et al.An investigation of the HOMO frontier orbital electron density distributions of NH3,the methylamines and NF3 using DFT and electron momentum spectroscopy[J].Chem.Phys.,2001,269(1):101
  • 5[6]Rolke J,Brion C E.Studies of the electron density in the highest occupied molecular orbitals of PH3,PF3 and P(CH3)3 by electron momentum spectroscopy and Hartree-Fock,MRSD-CI and DFT calculations[J].Chem.Phys.,1996,207(1):173
  • 6[7]Rolke J,Zheng Y,Brion C E,et al.Imaging of the HOMO electron density in Cr(CO)6,Mo(CO)6 and W(CO)6 by electron momentum spectroscopy:a comparison with Hartree-Fock and DFT calculations[J].Chem.Phys.,1997,215(2):191
  • 7[8]Cambi R,Ciullo G,Sgamellotti A,et al.Ionization of CH4 and some fluoromethanes:a green's function study and an (e,2e) spectroscopic investigation[J].Chem.Phys.Lett.,1981,80(2):295
  • 8[9]Cambi R,Ciullo G,Sgamellotti A,et al.Ionization of fluoromethanes:CHF3 and CF4.A Green function study and an (e,2e) spectroscopic investigation[J].Chem.Phys.Lett.,1982,90(6):445
  • 9[10]Cambi R,Ciullo G,Rosi M,et al.Ionization of fluorinated methanes and ethylenes through (e,2e) process and greens function approach to predict ionization potentials[J].Int.J.Mass Spectrom.,1983,46:261
  • 10[11]Grisogono A M,Pascual R,Niessen W Von,et al.The polychloromethanes-an experimental and theoretical investigation of their valence electronic structure[J].Chem.Phys.,1989,135(3):317

共引文献4

同被引文献25

  • 1Visioli F, Wolfram R, Richard D, et al. Olive phenolics increase glutathione levels in healthy volunteers [J] J. Agric. FoodChem., 2009, 57: 1793.
  • 2Ralat L A, Manevich Y, Fisher A B, etal Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase n with activity changes in both enzymes [J]. Biochem. , 2006, 45:360.
  • 3Rath A, Tulumello D V, Deber C M. Peptide models of membrane protein folding [J]. Biochem. , 2009, 48:3036.
  • 4Velichko Y S, Stupp S I, Cruz M O. Molecular simulation study of peptide amphiphile self-assembly[J]. J. Phys. Chem. B, 2008, 112: 2326.
  • 5Zhang R, Li H, Lei Y, et al. Different weak C-H O contacts in N-Methylacetamide-water system: molecular dynamics simulations and NMR experimental study [J]. J. Phys. Chem. B, 2004, 108:12596.
  • 6Zhang R, Li H, Lei Y, etal. All-atom molecular dynamic simulations and relative NMR spectra study of weak C--H."O contacts in amide-water system [J]. J. Phys. Chem. B, 2005, 109:7482.
  • 7Zhang R, Zheng D, Pan Y, et al. All-atom simulation and excess properties study on intermolecular interactions of amide-water system [J]. J. Mol. Struct. , 2008, 875:96.
  • 8Hall B A, Sansom M S P. Coarse-Grained MD simulations and protein-protein interactions: the cohesindockerin system [J]. J. Chem. Theory Comput. , 2009, 5: 2465.
  • 9Khalfa A, Tarek M J. On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations[J] J. Phys. Chem. B, 2010, 114: 2676.
  • 10Cruz V, Ramos J, Martinez-Salazar J. Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data [J] J. Phys. Chem. B, 2011, 115:4880.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部