期刊文献+

超纳米金刚石薄膜结构相变的第一原理分子动力学研究 被引量:1

Structural transition of super nano-diamond films studied by first principles molecular dynamics
下载PDF
导出
摘要 纳米金刚石薄膜的结构相变非常复杂,对稳定性和物理性质又尤为重要.本文用第一性原理分子动力学模拟研究了超纳米金刚石薄膜的结构相变和表面重构.研究发现,纳米金刚石的表面碳团簇通过断开(111)面的σ键,形成具有碳六元环结构的石墨碎片;内部原子sp3杂化向sp2杂化转化的发生是从(111)面上成对C原子向石墨相转化时形成π键的过程中获得了能量,驱动石墨的转变由表层向心部逐渐进行.转变过程中存在一种洋葱状富勒烯和金刚石结构共存的过渡相——Bucky-diamond,表面悬空键的消除和表层的富勒烯外壳最大限度地降低了表面能和系统总能量,Bucky-diamond结构稳定存在. The structural transitions of nano-diamond films are very complicated and all-important for their stability and physical properties. Using ab initio molecular dynamic methods, we have performed a systematic investigation of the structural transitions and surface reconstructions about diamond films. Through the calculation we observed the graphitization by breaking of highly eorrelatedabonds in diamond(111)surface, and come into being graphite hexahydroxy structures; the carbon atoms in sp3 hybridization state which inside the diamond transform to sp2 hybridization state by obtain energy from π bonds forming of carbon atoms in(111) surface, which take place during graphitization transition, so the graphitization of diamond go along from surface to inside. We also find the transitional structures, bucky-diamond, which keep diamond inside and fullerene-like reconstructions outside. The disappear of hanged bonds and the form of fullerene-like shell on surface lower the surface energy and total energy of system hugely, and the bucky structure stability existence.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2010年第5期932-936,共5页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10802081)
关键词 超纳米金刚石 表面重构 第一性分子动力学 计算机模拟 super nano-diamond films, structural transitions, first principles molecular dynamics, computer simulation
  • 相关文献

参考文献20

  • 1Gamarnik M Y. Size-related stabilization of diamond nanoparticles[J]. Nanostructured Materials, 1996, 7(6) .. 651.
  • 2Larciprete R, Lizzit S, Botti S, Cepek C, et al. Structural reorganization of carbon nanoparticales into single-wall nanotubes[J]. Phys. Rev. B, 2002, 66(12): 121402.
  • 3Fahy S, Louie S G, Cohen M L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond [J]. Phys. Rev. B, 1986, 34 (2) : 1191.
  • 4Scandolo S, Bernasconi M, Chiarotti G L, et al. Pressure-induced transformation path of graphite to diamond[J]. Phys. Rev. Lett. , 1995, 74(20) : 4015.
  • 5Tateyama Y, Ogitsu T, Kusakabe K, et al. Constant-pressure first-principles studies on the transition states of the graphite-diamond transformation [J]. Phys. Rev. B, 1996, 54(21): 14994.
  • 6Raty J Y, Galli G, Bostedt G, et al. Quantum confinement and fullerencelike surface reconstruction in nanodiamonds [J]. Phys. Rev. Lett., 2003, 90: 037401.
  • 7Stich I, Payne M C, King-Smith R D, et al. Reply [J]. Phys. Rev. Lett., 1993, 71(21).. 3613.
  • 8Pantea C, Qian J, Voronin G A, et al. High pressure study of graphitization of diamond crystals[J]. J. Appl. Phys., 2002, 91(4): 1957.
  • 9Kuznetsov V L, Ziberberg I L, Butenko Y V, et al. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface[J]. J. Appl. Phys. , 1999, 86(2): 863.
  • 10Kuznetsov V L, Chuvilin A L, Butenko Y V, et al. Onion-like carbon from ultra-disperse diamond [J]. Chem. Phys. Lett. , 1994, 222:343.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部