期刊文献+

二面体群的增广商群 被引量:1

Augmentation Quotients of the Dihedral Group
下载PDF
导出
摘要 记整群环ZG的增广理想△(G)的n次幂为△~n(G).描述了二面体群G=D_2t_r(t≥2,r为奇数)的n-次增广商群Q_n(G)=△n(G)/△^(n+1)(G)的结构,并得到Q_n(D_2t_r)≌Z_2^((s(n))),其中,如果1≤n≤t,那么s(n)=2n;如果n≥t+1,那么s(n)=2t+1. The authors present the nth powerΔ~n(G) of the augmentation idealΔ(G) and describe the structure of the augmentation quotient group Q_n(G) =Δ~n(G)/Δ^(n+1)(G) for dihedral group G = D_(2~t_r)(t≥2,r odd).It is also obtained that Q_n(D_(2~t_)r)≌Z_2^((s(n))),where s(n) = 2n for 1≤n≤t,and s(n) = 2t + 1 for n≥t + 1.
作者 周庆霞 游宏
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第5期531-540,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971150)资助的项目
关键词 整群环 增广理想 增广商群 Integral group ring Augmentation ideal Augmentation quotient group
  • 相关文献

参考文献1

二级参考文献7

  • 1Bachmann, P. and Grunenfelder, L., The periodicity in the graded ring associated with an integral group ring, Journal of Pure and Applied Algebra, 1974, 5(3): 253-264.
  • 2Karpilovsky, G., Commutative Group Algebras, Monographs and Textbooks in Pure and Applied Mathematics, Vol.78, Marcel Dekker, New York, 1983, 160-197.
  • 3Losey, G. and Losey, N, Augmentation quotients of some nonabelian finite groups, Proceedings: Mathmatical,Physical and Engineering Sciences, 1979, 85: 261-270.
  • 4Parmenter, M.M., A basis for powers of augmentation ideal, Algebra Colloquium, 2001, 8(2): 121-128.
  • 5Passi, I.B.S., Polynomial maps on groups, Journal of Algebra, 1968, 9(2): 121-151.
  • 6Tang Guoping, On a problem of karpilovsky, Algebra Colloquium, 2003,10(1): 11-16.
  • 7Zhao Hongmei and Tang Guoping, The structure of powers of augmentation ideals and their quotient groups for the integral group rings of the dihedral groups, Journal of Shaanxi Normal University, 2005, 33(2): 18-21.

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部