摘要
记整群环ZG的增广理想△(G)的n次幂为△~n(G).描述了二面体群G=D_2t_r(t≥2,r为奇数)的n-次增广商群Q_n(G)=△n(G)/△^(n+1)(G)的结构,并得到Q_n(D_2t_r)≌Z_2^((s(n))),其中,如果1≤n≤t,那么s(n)=2n;如果n≥t+1,那么s(n)=2t+1.
The authors present the nth powerΔ~n(G) of the augmentation idealΔ(G) and describe the structure of the augmentation quotient group Q_n(G) =Δ~n(G)/Δ^(n+1)(G) for dihedral group G = D_(2~t_r)(t≥2,r odd).It is also obtained that Q_n(D_(2~t_)r)≌Z_2^((s(n))),where s(n) = 2n for 1≤n≤t,and s(n) = 2t + 1 for n≥t + 1.
出处
《数学年刊(A辑)》
CSCD
北大核心
2010年第5期531-540,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10971150)资助的项目
关键词
整群环
增广理想
增广商群
Integral group ring
Augmentation ideal
Augmentation quotient group