期刊文献+

Optical patterns in spatially coupled phase-conjugate systems

Optical patterns in spatially coupled phase-conjugate systems
下载PDF
导出
摘要 Various pattern evolutions are presented in one- and two-dimensional spatially coupled phase-conjugate systems (SCPCSs). As the system parameters change, different patterns are obtained from the period-doubling of kink-antikinks in space to the spatiotemporal chaos in a one-dimensional SCPCS. The homogeneous symmetric states induce symmetry breaking from the four corners and the boundaries, finally leading to spatiotemporal chaos with the increase of the iteration time in a two-dimensional SCPCS. Numerical simulations are very helpful for understanding the complex optical phenomena. Various pattern evolutions are presented in one- and two-dimensional spatially coupled phase-conjugate systems (SCPCSs). As the system parameters change, different patterns are obtained from the period-doubling of kink-antikinks in space to the spatiotemporal chaos in a one-dimensional SCPCS. The homogeneous symmetric states induce symmetry breaking from the four corners and the boundaries, finally leading to spatiotemporal chaos with the increase of the iteration time in a two-dimensional SCPCS. Numerical simulations are very helpful for understanding the complex optical phenomena.
机构地区 College of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期187-193,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10847110)
关键词 pattern evolution phase-conjugate one- and two-dimensional spatially systems pattern evolution, phase-conjugate, one- and two-dimensional spatially systems
  • 相关文献

参考文献21

  • 1Kaneko K 1989 Physica D 34 1.
  • 2Kaneko K 1989 Physica D 37 60.
  • 3Willeboordse F H 1992 Chaos, Solitons and Fractals 2 609.
  • 4Willeboordse F H 1993 Phys. Rev. E 47 1419.
  • 5Kuramoto Y and Nakao H 1996 Phys. Rev. Left. 76 4352.
  • 6Locher M, Johnson G A and Hunt E R 1997 Chaos, Solitons and Fractals 8 1523.
  • 7Ouchi N B and Kaneko K 2000 Chaos 10 359.
  • 8Qin W x and Qian D B 2000 Chaos, Solitons and Fractals 11 2305.
  • 9Liu Z R and Luo J G 2006 Chaos, Solitons and Fractals 30 1198.
  • 10Willeboordse F H 2003 Chaos 13 533.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部