期刊文献+

一种新的模糊支持向量机算法 被引量:3

A New Fuzzy Support Vectors Machine Algorithm
下载PDF
导出
摘要 通过改进的模糊K近邻方法对模糊隶属度进行求解,将求得的隶属度带入模糊支持向量机中。实验表明,采用该方法得出的分类结果与用支持向量机方法和用根据距离求解隶属度的模糊支持向量机方法的结果进行比较,误差最小,而且有效的降低了过学习的问题,证明了该方法的可行性。 In this paper,an improved fuzzy K neighbors method was used to solve the fuzzy membership,which was got into the fuzzy support vector machine。 Experimen show that the classification results obtained by this method,compared with the classification results returned by support vectors machine algorithm and the fuzzy support vectors machine whose membership was solved only based on distance,has the smallest error,and it is effective in reducing the over learning problem,which proved this method is feasible.
出处 《微计算机信息》 2010年第30期217-218,211,共3页 Control & Automation
关键词 隶属度 支持向量机 模糊K近邻 模糊支持向量机 membership support vector machine fuzzy K neighbors fuzzy support vector machine
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 2[2]CRISTIANINI N,TAYLOR S J.An introduction to support vector machines[M].Cambridge:Cambridge University Press,2000.
  • 3[3]LIN C F,WANG S D.Fuzzy support vector machines[J].IEEE Trans Neural Networks,2002,13 (2):464-471.
  • 4[4]INOUE T,ABE S.Fuzzy support vector machines for pattern classification[A].Proceedings of International Joint Conference on Neural Networks[C].Washington,D.C.,2001.
  • 5[5]HUANG H P,LIU Y H..Fuzzy support vector machines for pattern recognition and data mining[J].International Journal of Fuzzy Systems,2002,4(3):826-835.
  • 6[6]ZHANG X G.Using class-center vectors to build support vector machines[A].Proc IEEE NNSP' 99[C].USA,1999.
  • 7Lin C F, Wan Sh D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002,13(2) :464 - 471.
  • 8Chiang J H, Hao P Y. A new kernel-based fuzzy clustering approach: support vector clustering With cell Growing [J]. IEEE Transactions on Fuzzy Systems, 2003,11 ( 4 ) : 518 - 527.
  • 9Lin Y, Lee Y, Wahba G. Support vector machines for classification in nonstandard situations [ J ]. Machine Learning, 2002,46 : 191 - 202.
  • 10Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and data mining [ J ]. Internation Journal of Fuzzy Systems,2002,4(3 ) :826 - 835.

共引文献45

同被引文献10

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部