期刊文献+

信息融合熵在临床诊断中的应用研究 被引量:1

Research of the information fusion entropy in the clinical diagnosis application
下载PDF
导出
摘要 本文详细介绍信息融合熵理论在医疗临床诊断中的应用,为临床定量诊断提供一种新思路。利用信息论熵的相关理论和D-S证据理论,提出一种基于信息熵和D-S证据理论的多征候信息融合诊断方法。以肠梗阻疾病诊断为例,论述实际诊断应用中该方法的应用,并证明该方法可有效提高诊断结果的正确性。 This paper introduced the information fusion entropy in the Medical clinical diagnosis application,providing a new way for clinical quantitative diagnosis. Adopting the information theory,entropy theory and D-S evidence theory,we proposed the information fusion of multi-symptom diagnosis algorithm based on the information entropy and the D-S evidence theory; Finally,using the intestinal disease diagnosis for example,we discussed the concrete realization of the process of the algorithm proposed,the analysis and simulation results show that it is a practical approach ,reducing the uncertainty of the system output obviously.
作者 武金艳 易波
出处 《微计算机信息》 2010年第31期101-103,共3页 Control & Automation
关键词 信息熵 信息融合 临床诊断 Information entropy Information fusion Clinical diagnosis
  • 相关文献

参考文献7

二级参考文献37

  • 1王荣杰,胡清.基于知识的故障诊断方法的发展现状与展望[J].微计算机信息,2006,22(03S):218-220. 被引量:37
  • 2王培屹.全自主足球机器人运动模型的改进[J].武汉化工学院学报,2006,28(3):62-64. 被引量:1
  • 3张继国,张文修.模糊随机变量及其概率分布[J].模糊系统与数学,1996,10(4):76-82. 被引量:5
  • 4丁晓青,电子学报
  • 5Aadeh. L A. Probability measures of fuzzy events[J]. J. of Math. Analysis and Applicat. , 1968,23:421-427.
  • 6Deluca A,Termini S. A definition of a nonprobabilitstic entropy in the setting of fuzzy sets theory[J].Inform. Contr. , 1972,20 : 301-312.
  • 7Fan J,Ma Y L,Xie W X. On some properties of distance measures[J]. Fuzzy Sets and Systems,2001,117:355-361.
  • 8Kosko B. Fuzzy entropy and conditioning[J]. Inform. Sci., 1986,40:165-174.
  • 9Hgashi M,Klir G J. On measure of fuzziness and fuzzy complements[J]. Intern. J. of General Systems,1982,8:169-180.
  • 10Pal N R,Pal S K. Object-background segmentation using new definitions of entropy[J]. IEEE Proceedings. ,1989. 136,part E:284-295.

共引文献34

同被引文献47

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部