期刊文献+

基于模型的单通道语音分离综述 被引量:4

Survey of model-based single-channel speech separation
下载PDF
导出
摘要 语音分离是实现机器听觉的一个重要而基础性的任务,单通道语音分离是语音分离中最为困难的问题。讨论了基于模型的单通道语音分离方法,对说话人依赖的、说话人选择的和说话人独立的三类单通道语音分离问题展开分析,并指出当前方法存在的问题和影响算法性能的关键因素。最后对基于模型的单通道语音分离研究发展方向进行了展望。 Speech separation is an important and basic task for computer audition,and single-channel speech separation is the most difficult problem in the field of speech separation.This paper reviewed the research topic of model-based single channel speech separation and discussed major methods developed in the literature which could group into three major categories:speaker-dependent,speaker-selection and speaker-independent separation.Analyzed the major shortcomings of each method and studied the key factors that affected the performance of the algorithm.Finally,discussed the future research directions on this topic.
作者 杨海滨 张军
出处 《计算机应用研究》 CSCD 北大核心 2010年第11期4025-4031,共7页 Application Research of Computers
关键词 单通道语音分离 基于模型 说话人依赖 说话人选择 说话人独立 single-channel speech separation model-based speaker-dependent speaker-selection speaker-independent
  • 相关文献

参考文献50

  • 1CHERRY E C. Some experiments on the recognition of speech, with one and with two ears [ J ]. Journal of the Acoustical Society of America, 1953,25 ( 5 ) : 975- 979.
  • 2CICHOCKI A,PARK H M,LEE S Y. Blind source separation and independent component analysis: a review [ J ]. Neural Information Processing-Letters and Reviews ,2005,6( 1 ) : 1-57.
  • 3BELL A J, SEJNOWSK! T J. An information maximization approach to blind separation and blind deconvolution[ J]. Neural Computation, 1995,7(6) :1129-1159.
  • 4DOUGLAS S C. Blind separation of acoustic signals[ M ]//BRANDSTEIN M, WARD D. Microphone Arrays: Signal Processing Techniques and Applications. New York:Springer,2001.
  • 5SMARAGDIS P. Blind separation of convolved mixtures in the frequency domain [ J ]. Neurocomputing, 1998,22 ( 1 ) :21 - 34.
  • 6IKEDA S, MURATA N. A method of ICA in time-frequency domain [ C ]//Proc of International Conferenee on Independent Component Analysis and Signal Separation. 1999:365-371.
  • 7PEDERSEN M S, LARSEN J, KJEMS U, et al. A survey of convolutive blind source separation methods [ M ]//BENESTY J, SONDHI M M, HUANG Y. Springer Handbook of Speech Processing. Berlin: Springer, 2007.
  • 8COOKE M, LEE T W. The speech separation challenge[ EB/OL]. (2006) [ 2010-04-24 ]. http://www. dcs. shef. ac. uk/- martin/ SpcechSeparationChallenge. htm.
  • 9NAKATANI T, OKUNO H G. Harmonic sound stream segregation using localization and its application to speech stream segregation[ J ]. Speech Communication, 1999,27 (3) :209-222.
  • 10ROUAT J, LIU Y C, MORISSETTE D. A pitch determination and voiced/unvoiced decision algorithm for noisy speech [ J ]. Speech Communication, 1997,21 (3) : 191 - 207.

同被引文献20

  • 1陈俊,孙洪,董航.基于MMSE先验信噪比估计的语音增强[J].武汉大学学报(理学版),2005,51(5):638-642. 被引量:6
  • 2欧世峰,赵晓晖,顾海军.改进的基于信号子空间的多通道语音增强算法[J].电子学报,2005,33(10):1786-1789. 被引量:8
  • 3贾云龙,张永刚,姚忠山.基于FastlCA算法的混合声信号分离技术[J].声学技术,2009(2):18-20.
  • 4BOGDAN M, MAARTEN D V, IVAN G C, et al. Combining EMD with ICA for extracting independent sources fromsingle channel and two - channel data [ C]. Argentina:32nd Annu- M International Conference of the IEEE EMBS Buenos Aires, August 31 - September 4,2010.
  • 5COMON P. Independent component analysis:a new concept [ J ]. Signal Processing, 1994,36 ( 3 ) :287 - 314.
  • 6Lu Yao, LI Shuangtian. Underdetermined blind source sepa- ration of anechoic speech mixtures in the time - frequency domain [ C ]. ICSP2008 Proceedings,2008 : 22 - 25.
  • 7L! Yuanqing, AMARI S I,ANDRZEJ C, et al. Probability es- timation for recoverability analysis of blind source separation based on sparse representation [J]. IEEE Transactions on Information Theory,2006,52(7) :3139 -3152.
  • 8DAVIES M E, JAMES C J. Source separateion using singlechannel ICA [J]. Signal Processing,2007,87(8) :1819 -1832.
  • 9P.C.Loizou,高毅,等.语音增强:理论与实践[M].成都:电子科技大学出版社,2012.
  • 10李从清,孙立新,龙东,任晓光.语音分离技术的研究现状与展望[J].声学技术,2008,27(5):779-787. 被引量:10

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部