期刊文献+

专家搜索中关系证据的重要性研究 被引量:1

Research on importance of relationship evidences in expert search
下载PDF
导出
摘要 系统地研究了查询词与候选人在文档中的距离和顺序关系对专家搜索算法准确率的影响。首先在概率语言模型的框架下提出了顺序核函数来建模顺序关系证据;然后进一步提出两种对不同关系证据进行统一建模的概率框架,并通过在TREC标准数据集上的对比实验,探索了结合两种关系证据进行专家搜索的可行性。实验结果表明,距离和顺序关系证据对专家搜索系统的准确率提高能力相近,而对它们的适当结合可以获得比单独利用其中任何一种更好的效果。 This paper studied the influence of using the relationship evidences,namely the distance and sequential dependencies between query terms and candidates in a document,to the precision of expert finding algorithms.Specifically,first proposed an order kernel function to model the sequential relationship,and then proposed two probabilistic frameworks to model two kinds of relationship evidences in a unified way.Experiment results show that the distance and sequential evidences achieve comparable performance gains over the baseline and a combination of both can achieve better performance than using any of them alone.
作者 杨柳 张文生
出处 《计算机应用研究》 CSCD 北大核心 2010年第11期4040-4043,4047,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(90924026) 国家"863"高技术研究发展计划项目(2008AA01Z121 2007AA01Z338)
关键词 概率语言模型 专家搜索 关系证据 核函数 统一建模 probability language model expert search relationship evidence kernel function unified framework
  • 相关文献

参考文献16

  • 1CRASWELL N, VRIES A P D. Overview of the TREC 2005 enterprise track[ C]//Proc of the 14th Text Retrieval Conference. New York: [ s. n. ] ,2005.
  • 2SOBOROFF I,VRIES A P D, CRASWELL N. Overview of the TREC 2006 enterprise track [ C]//Proc of the 15th Text Retrieval Conference. New York: [ s. n. ] ,2006.
  • 3BALOG K, RIJKE M D. Non-local evidence for expert finding [ C ]// Proc of the 17th ACM Conference on Information and Knowledge Management. Napa Valley : ACM Press ,2008:489-498.
  • 4FANG Hui, ZHAI Cheng-xiang, Probabilistic models for expert finding [ C ]//Proc of the 29th European Conference on Information Retrieval Research. Rome : Springer, 2007:418 - 430.
  • 5PETKOVA D,CROFT W B. Proximity-based document representation for named entity retrieval[ C]//Proc of the 16th ACM Conference on Information and Knowledge Management. Lisbon: ACM Press, 2007 : 731-740.
  • 6CAO Yun-bo, LIU Jing-jing, BAO S. A two-stage model for expert search[ R]. [ S. l. ] :Microsoft,2008.
  • 7ZHU Jian-han, HUANG Xiang-ji, SONG Da-wei, et al. Integrating muhiple document features in language models for expert finding[ J]. Knowledge and Information Systems,:2010, 23 ( 1 ) : 29 - 54.
  • 8SERDYUKOV P, RODE H,HIEMSTRA D. Exploiting sequential dependencies for expert finding [ C ]//Proc of the 31 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore : ACM Press ,2008:795-796.
  • 9MACDONALD C, OUNIS I. Voting techniques for expert search [ J ]. Knowledge and Information Systems, 2007,16 ( 3 ) : 259- 280.
  • 10SERDYUKOV P,RODE H, HIEMSTRA D. Modeling multi-step relevance propagation for expert finding[ C]//Proc of the 17th ACM Conference on Information and Knowledge Management. Napa Valley: ACM Press ,2008 : 1133-1142.

同被引文献18

  • 1Baumard P.Tacit knowledge in organizations[M].Thousand Oaks,CA,USA:Sage Publications,2001.
  • 2Seid D,Kobsa A.Demoir:A Hybrid Architecture for Expertise Modeling and Recommender Systems[J].Enabling Technologies:Infrastructure for Collaborative Enterprises,2000:67-74.
  • 3Becerra-Fernandez I.Searching for experts on the Web:A review of contemporary expertise locator systems[J].ACM Transactions on Internet Technology,2006,6(4):333-355.
  • 4Balog K,Azzopardi L,de Rijke M.Formal models for expert finding in enterprise corpora[C]//Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,(SIGIR’06),New York,NY,USA,2006:43-50.
  • 5Balog K,Azzopardi L,de Rijke M.A language modeling framework for expert finding[J].Information Processing and Management,2009,45(1):1-19.
  • 6Rosen-Zvi M,Griffiths T,Steyvers M.The author-topic model for authors and documents[C]//Proceedings of the 20th International Conference,2004.
  • 7Tang J,Zhang J,Yao L,et al.ArnetM iner:extraction and mining of academic social networks[C]//Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,2008:990-998.
  • 8Ley M.The DBLP computer science bibliography:Evolution,research issues,perspectives[C]//String Processing and Information Retrieval.Springer,2002:481-486.
  • 9Acland A,Agarwala R,et al.Database resources of the National Center for Biotechnology Information[J].Nucleic Acids Res.2013,41:D8-D20.
  • 10Page L,Brin S,Motwani R,et al.The PageRank citation ranking:bringing order to the Web[R].Stanford InfoL ab,1999.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部