期刊文献+

THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMAL-HYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS 被引量:3

THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMAL-HYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS
原文传递
导出
摘要 Three-dimensional numerical simulations and experiments were carried out to study the heat transfer characteristics and the pressure drop of air flow in a circular tube with Edgefold-Twisted Tape (ETT) inserts and with classic Spiral-Twisted-Tape (STT) inserts of the same twist ratio. The RNG turbulence model for mildly swirling flows, the enhanced wall treatment for low Reynolds numbers, and the SIMPLE pressure-velocity method were adopted to simulate the flow and heat transfer characteristics. Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number of the tube with ETT inserts is found to be 3.9% - 9.2% higher than that with STT inserts, and the friction factor of the tube with ETT inserts is 8.7% - 74% higher than that of STT inserts. The heat enhancement is due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length. It is found that main factors affecting the heat transfer of ETT inserts are the twist angle and the gap width between the tube and inserts. A larger twist angle leads to a higher tangential velocity, and larger Nusselt number and friction factor. The thermal-hydraulic performance slowly decreases as the twist angle increases. The gap width between tube and inserts has a significant influence on the heat transfer, while little influence on pressure drops. The thermal-hydraulic performance increases in average by 124% and 140% when the gap width reduces from 1.5 mm to 1.0 mm and 0.5 mm. The larger the gap width, the higher velocity through the gap will be, which would reduce the main flow velocity and tangential velocity. So a small gap is desirable. Comparing experimental and numerical results at variable air flow and tube wall temperature, the numerical results are found to be in a reasonable agreement with the experiment results, with difference of the Nusselt number in a range of 1.6% - 3.6%, and that of the friction factor in a range of 8.2% - 13.6%. Three-dimensional numerical simulations and experiments were carried out to study the heat transfer characteristics and the pressure drop of air flow in a circular tube with Edgefold-Twisted Tape (ETT) inserts and with classic Spiral-Twisted-Tape (STT) inserts of the same twist ratio. The RNG turbulence model for mildly swirling flows, the enhanced wall treatment for low Reynolds numbers, and the SIMPLE pressure-velocity method were adopted to simulate the flow and heat transfer characteristics. Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number of the tube with ETT inserts is found to be 3.9% - 9.2% higher than that with STT inserts, and the friction factor of the tube with ETT inserts is 8.7% - 74% higher than that of STT inserts. The heat enhancement is due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length. It is found that main factors affecting the heat transfer of ETT inserts are the twist angle and the gap width between the tube and inserts. A larger twist angle leads to a higher tangential velocity, and larger Nusselt number and friction factor. The thermal-hydraulic performance slowly decreases as the twist angle increases. The gap width between tube and inserts has a significant influence on the heat transfer, while little influence on pressure drops. The thermal-hydraulic performance increases in average by 124% and 140% when the gap width reduces from 1.5 mm to 1.0 mm and 0.5 mm. The larger the gap width, the higher velocity through the gap will be, which would reduce the main flow velocity and tangential velocity. So a small gap is desirable. Comparing experimental and numerical results at variable air flow and tube wall temperature, the numerical results are found to be in a reasonable agreement with the experiment results, with difference of the Nusselt number in a range of 1.6% - 3.6%, and that of the friction factor in a range of 8.2% - 13.6%.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第5期662-670,共9页 水动力学研究与进展B辑(英文版)
基金 Project supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB206903)
关键词 heat transfer enhancement Edgefold-Twisted-Tape (ETT) Spiral-Twisted-Tape (STT) thermal-hydraulic performance heat transfer enhancement Edgefold-Twisted-Tape (ETT) Spiral-Twisted-Tape (STT) thermal-hydraulic performance
  • 相关文献

参考文献25

二级参考文献43

共引文献129

同被引文献9

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部