期刊文献+

压缩感知理论及其应用前景 被引量:3

Theory of CS and the Prospect of Its Application
下载PDF
导出
摘要 压缩感知理论是近年来提出的一种基于信号稀疏性的新兴采样理论。与通常的数据采样定理不同,该理论提出可以用远远少于传统采样定理所需的采样点数或观测点数恢复出原信号或图像。本文主要阐述了压缩感知中信号的稀疏表示、测量矩阵的设计及信号的重构算法等基本理论,论述了该理论的广阔应用前景。 The theory of compressive sensing(CS)relying on signal sparsity,is a new sampling theory proposed recently.Going against the common wisdom in data acquisition,CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional method use.This paper presents some basic theories of CS,including signal sparse representation,design of measurement matrix and reconstruction algorithm and discusses the bright prospect of its application.
出处 《中国新通信》 2010年第21期71-73,共3页 China New Telecommunications
关键词 压缩感知 稀疏表示 观测矩阵 RIP CS sparse representation measurement matrix RIP
  • 相关文献

参考文献9

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 2Baron D,Wakin M B,Duarte Met al.Distributed compressed sensing. http://www.dsp.rice.edu/~drorb/pdf/DCS112005.pdf .
  • 3Donoho D.Compressed sensing. IEEE Transactions on Information Theory . 2006
  • 4Baraniuk R.A lecture on compressive sensing. IEEE Signal Processing Magazine . 2007
  • 5Candes E J,Wakin M.An introduction to compressive sampling. IEEE Signal Processing Magazine . 2008
  • 6D. Donoho,Y. Tsaig.Extensions of compressed sensing. Signal Processing . 2006
  • 7Shane E Cotter,and Bhaskar D Rao."Sparse Channel Estimation via Matching Pursuit With Application to Equalization". IEEE Transactions on Communications . 2002
  • 8Candes E J,Rudelson M,Tao T,Vershynin R.Error correction via linear programming. The46th Annual IEEE Symposium on Foundations of Computer Science . Oct.23-252005
  • 9E Candes.Compressive sampling. Proceedings of the International Congress of Mathematicians . 2006

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献30

  • 1王迪,雷武虎,高晓平.星载SAR无源干扰分析[J].舰船电子对抗,2007,30(5):23-26. 被引量:1
  • 2David L Donoho. Compressed Sensing [ J ]. IEEE Trans- actions on information theory, 2006, 52(4) : 1289-1306.
  • 3E Candes, T Tao. Near-Optimal Signal Recovery From Random Projections : Universal Encoding Strategies? [ J ]. IEEE Transactions on information theory, 2006, 52 ( 12 ) : 5406-5425.
  • 4Duarte M, Davenport M. Single-pixel imaging via com- pressive sampling [ J ]. IEEE Signal Processing Magazine, 2008, 25(2) : 83-91.
  • 5Kirolos S, Laska J. Analog-to-information conversion via random demodulation[ C]//Proceedings of the IEEE Dal- las Circuits and Systems Workshop on Design, Applications,Integration and Software. Richardson, USA : IEEE, 2006 : 71 -74.
  • 6Baraniuk R, Steeghs Y. Compressive radar imaging [ C ]//Proc. 2007 IEEE Radar Conf. Boston : MA. 2007 : 128-133.
  • 7Sagar Shah, Yao Yu, Athina Petropulu. Step-frequency radar with compressive sampling ( SFR- CS ) [ C ]//IEEE In- ternational Conference on Acoustics, Speech and Signal Pro- cessing. 2010 : 1686-1689.
  • 8Guochao Lao, Wei YE, Hang Ruan. Retransmitted Jam- ming Method to LFM Radar Based on Compressed Sensing [ C ]//2"4 International Workshop on Compressed Sensing ap- plied to Radar. Bonn, Germany, 2013.
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 10贾鑫,尹灿斌.一种基于混沌控制调频率的SAR干扰方法[J].航天电子对抗,2009,25(5):22-24. 被引量:2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部