摘要
设S是以En中点Ai(ai1,ai2,…,ain),(i=0,1,…,k,1≤k≤n)为顶点的k维定向非退化单形,Ai(i=0,1,…,k)确定的k维平面上任意一点A(x1,x2,…,xn)将S分成k+1个k维定向单形,若它们的k维带号体积比V[AA1…Ak]∶V[A0AA2…Ak]∶…∶V[A0A1…Ak-1A]=u0∶u1∶…∶uk,则有①点A的重心坐标为(u0u,u1u,…,uku),②xi=∑kj=0ujajiu(i=1,…,n),其中u=∑kj=0uj。
Let S be a directed nondegenerate k dimensional simplex,with A i(a i1 ,a i2 ,…,a in ),(i=0,1,…,k,1≤k≤n) as its vertexes.Any point A(x 1,x 2,…,x n) on the k dimensional plane determined by A i(i=0,1,…,n), divides S into k+1 directed k dimensional simplexes in the signed volume ratio V[AA 1…A k]∶V[A 0AA 2…A k]∶…∶V[A 0A 1…A k-1 A]=u 0∶u 1∶…∶u k. Then barycentric coordinates of point A are (u 0/u 1,u 1/u,…,u k/u) and x i=∑kj=0u ja ji /u(i=1,2,…,n), where u denotes ∑kj=0u j.
关键词
定向单形
带号体积
重心坐标
Directed k dimensional simplex, Signed volume, Barycentric coordinates