期刊文献+

从几何增长网络谈起 被引量:3

Starting with Geometrically Growing Networks
下载PDF
导出
摘要 如何判断实际网络和模型网络(如层次网络、伪分形图、阿波罗网等)的度分布为幂律和确定其度指数?这将涉及测量网络度分布的方法。文献上有3种方法:度频率、对数盒子、度秩次或补分布,指出正确的方法是采用秩次或补分布画图。因为模型网络是实际网络的抽象,仅仅度分布相同不能说明就是恰当的模型。实际网络通常只能得到部分数据,数据(子)网络与实际网络两者度分布的关系也需要探讨。 How to judge whether the degree distribution of a real network or model network ( e. g. , hier- archical networks, pseudofractal graphs, Apollonian networks, etc. ) is power-law, and to determine its degree exponent, this problem deals with the measurement of degree distributions. There are three methods: size-frequency; logarithmic binning; size-rank or complementary CDF in the literature on complex networks. It is pointed out that correct method is plotting size-rank or complementary CDF on doubly-logarithmic scale. Since model network is an abstract of real network, only both degree distributions match case, we can not say it is just a correct model. For a real network, obtained data only is a subnetwork of real network, are their degree distributions the same? This still need to be explored.
作者 史定华
机构地区 上海大学数学系
出处 《复杂系统与复杂性科学》 EI CSCD 2010年第2期82-89,共8页 Complex Systems and Complexity Science
基金 国家自然科学基金项目(60874083 10872119)
关键词 层次网络 伪分形图 阿波罗网 度频率 对数盒子 度秩次 补分布 度指数 子网络 hierarchical network pseudofractal graph apollonian network size-frequency logarithmic binning size-rank complementary CDF degree exponent subnetwork
  • 相关文献

参考文献16

  • 1Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[ J]. Nature, 2000, 407:651 -654.
  • 2Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks[ J]. Science, 2002, 297:1551 - 1555.
  • 3Barabasi A-L, Ravasz E, Vicsek T. Determinic scale-free networks[ J]. Physica A, 2001, 229:559 -564.
  • 4FarkaseI, Derenyi I, Jeong H, et al. Networks in life: scaling properties and eigenvalue spectra[J]. Physica A, 2002, 314: 25 - 34.
  • 5Ravasz E, Barabasi A-L. Hierarchical organization in complex networks[J]. Phys Rev E, 2003, 67: 026112.
  • 6Dorogovtsev S N, Gotsev A V, Mendes J F F. Pseudofractal scale-free web[ J]. Phys Rev E, 2002, 65:066122.
  • 7Andrade J S, Herrmann H J, Andrade R F S. et al. Apollonian networks[JJ. Phys Rev Lett, 2005, 94: 018702.
  • 8Andrade J S, Herrmann H J, Andrade R F S, et al. Erratum: Apollonian networks[J]. Phys Rev Lett, 2009,102: 079901.
  • 9Guo J L , Wang L N. Correct degree distribution of apollonian networks[ J] Physics Procedia, 2010,3 : 1791 - 1793.
  • 10Li L, Alderson D, Doyle J C, et al. Towards a theory of scale-free graphs: definitions, properties, and implications[ J]. Internet Math ,2005, 2:431 - 523.

同被引文献25

  • 1陈庆华,史定华.增长网络的形成机理和度分布计算[J].应用数学与计算数学学报,2005,19(1):30-38. 被引量:5
  • 2汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 3Tang M, Zhou T. Efficient routing strategies in scale-free networks with limited bandwidth [ J ]. Physical review E, 2011,84(2) :2 -4.
  • 4Bogdan D,Yu Y,John A. Optimal transport on complex net- works[ J]. Phys Rev E,2006,74:1 - 3.
  • 5Yan G,Zhou T,Hu B. Efficient Routing on Complex Net- works[J]. Phys Rev E,2006(73) :1 -5.
  • 6PASTOR-SATORRAS R,VESPIGNANI A.Epidemic dynamics and endemic states in complex networks[J].Physical Review E,2001,63(6):066117.
  • 7MORENO Y,PASTOR-SATORRAS R,VESPIGNANI A.Epidemic outbreaks in complex heterogeneous networks[J].The European Physical Journal B-Condensed Matter and Complex Systems,2002,26(4):521-529.
  • 8BOGUNA M,PASTOR-SATORRAS R.Epidemic spreading in correlated complex networks[J].Physical Review E,2002,66(4):047104.
  • 9ERDS P,RNYI A.On the evolution of random graphs[J].Publicaton of the Mathematical Institute of the Hungarian Academy Ofences,1960,38(1):17-61.
  • 10WATTS D J,STROGATZ S H.Collective dynamics of‘small-world’networks[J].Nature,1998,393(6684):440-442.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部