期刊文献+

基于PCA主成分分析的人脸检测实现与分析 被引量:10

Human Face Recognition with PCA Method
下载PDF
导出
摘要 介绍了基于PCA主成分分析的人脸检测原理,提出使用直方图均衡和切割图像的方法弱化非人脸特征信息干扰,提升主成分分析效果.并通过对35幅原始灰度人脸样本进行训练,使用Matlab实现全部分析步骤,并成功通过信噪比阈值判定完成了对样本空间外的人脸图像与非人脸图像的区分. As a subspace projection technique within the context of a baseline system for human face recognition,the principal component analysis(PCA) is introduced in this paper.With the histogram equalization and human face normalization methods,an algorithm with a higher recognition rate is achieved by using MATLAB.In this study,35 grayscale human faces were used as sample images.
作者 孙崇璇
出处 《云南民族大学学报(自然科学版)》 CAS 2010年第6期439-443,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 云南省教育厅科学研究基金(09Y0257)
关键词 人脸检测 MATLAB实现 PCA主成分分析 直方图均衡 人脸归一化 human face recognition Matlab PCA histogram equalization human face normalization
  • 相关文献

参考文献6

二级参考文献48

  • 1尚赵伟,张明新,赵平,沈钧毅.基于不同复小波变换方法的纹理检索和相似计算[J].计算机研究与发展,2005,42(10):1746-1751. 被引量:11
  • 2谈昌彬,李一民.基于EHMM的人脸识别[J].云南民族大学学报(自然科学版),2006,15(4):285-288. 被引量:5
  • 3黄中美,张小洪,杨丹.基于二元树复小波特征表示的人脸识别方法[J].计算机应用,2007,27(5):1135-1137. 被引量:4
  • 4H. A. Bangpeng Yao and S. Lao. Logitrankboost with pruning for face recognition. 8th IEEE International Conference on Automatic Face and Gesture Recognition ( FG 2008 ), 2008. 5.
  • 5I. Cohen, N. Sebe, A. Garg, L. Chen, and T. Huang. Facial expression recognition from video sequences: Temporal and static modeling. Computer Vision and Image Understanding, 91( 1 -2), 2003. 1.
  • 6J. Cohn. Automated analysis of the configuration and timing of facial expression. What the face reveals (2nd edition) : Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS), pages 388 - 392, 2005. 1.
  • 7A. R. de Moraes and I. R. Dunsmore. Predictive comparisons in ordinal models. Communications in Statistics -Theory and Methods, 1995. 3.
  • 8P. Ekman and W. V. Friesen. Facial action coding system. Consulting Psychologists Press, 1978. 1.
  • 9Y. Freund, R. lyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., vol. 4:933 - 969, 2003. 2, 3, 5.
  • 10G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. , 29(6):915 -928, 2007. 1.

共引文献6

同被引文献60

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部