期刊文献+

共轭长度、特征标次数与有限群的可解性

Conjugation lengths,character degrees and solvability of finite groups
下载PDF
导出
摘要 对一个正整数n,若所有共轭数长度都与其互素的有限群均可解.则称n为共轭类可解互素数,简记为CSC-数;类似地,将此定义中的"共轭数长度"替换为"不可约复特征标次数",则称n为特征标次数可解互素数,简记为DSC-数.同时证明了,正整数n是CSC-数(DSC-数)的充要条件是n能被2或15整除. The positive integer n is called conjugation class of solvable coprime number(abbreviated CSC-number) if all the conjugation class lengths and their coprime finite group are solvable;similarly,if "conjugation class lengths" of the definition is replaced by "irreducible complex character degrees",then n is called the solvable coprime number of irreducible complex character degrees(abbreviated DSC-number).In this paper,it is proved that n being divided exactly by 2 or 15 is the necessary and sufficient condition for n being a CSC-number(DSC-number).
作者 何立国 张泽
出处 《沈阳工程学院学报(自然科学版)》 2010年第4期381-382,共2页 Journal of Shenyang Institute of Engineering:Natural Science
基金 辽宁省教育厅科技基金资助项目(No.2008516)
关键词 特征标次数 共轭类长度 可解群 character degree conjugation class length solvable group
  • 相关文献

参考文献6

  • 1Feit W, Thompson J G. Solvability of groups of odd order [J].Pacific J Math, 1963,13 (3) :775 - 1029.
  • 2何军华,蒲伟.阶与n互素的群均可解之数n[J].西南师范大学学报(自然科学版),1999,24(6):612-614. 被引量:4
  • 3Granville A, Ono K. Defect zero p-blocks for finite simple groups [J]. Tran Amer Math Soc, 1996,348 ( 1 ) : 331 - 347.
  • 4徐明曜.有限群论导引:上[M].北京:科学出版社,2001.
  • 5Conway J H, Curtis R T, Norton S P, et al. Wilson, Atlas of finite groups ( Reprinted 2003 ) [ M t. New York. Oxford University Press, 1985.
  • 6Manz O, Wolf T R. Representations of Solvable Groups [ M ]. Cambridge: Cambridge Univ, Press, 1993.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部