期刊文献+

一类带非线性项的拟线性抛物方程解的熄灭问题

Extinction for a Quasi-linear Parabolic Equation with Non-linear Source
下载PDF
导出
摘要 研究了形如ut-div[σ(|▽u|2)▽u]=h(x)up的拟线性抛物方程在RN中有界凸空间上解的熄灭问题,利用上下解方法以及积分估计的方法得到两类在有限时间内解熄灭的结果,研究中所利用的方法是一种常用方法,可以推广到更一般的拟线性抛物方程的研究中去。 This paper deals with extinction of solution of the initial boundary value problem of quasi-linear parabolic equation ut-div[σ(|▽u|2)▽u]=h(x)up in a bounded convex domain of R N with N≥2.Through upper and lower solution and integral estimate method, two results of extinction of solution can be obtained. The results obtained can be extended to more general form of quasi-linear parabolic equations.
作者 张蕤 蔡茜
出处 《金陵科技学院学报》 2010年第3期1-4,共4页 Journal of Jinling Institute of Technology
基金 江苏省教育厅自然科学基金项目(08KJB110005)
关键词 熄灭 拟线性抛物方程 非线性项 extinction quasi-linear parabolic equation non-linear sources
  • 相关文献

参考文献13

  • 1崔周进,徐兵.一类带非线性对数项的拟线性椭圆方程解的存在性[J].科技导报,2009,27(2):43-46. 被引量:2
  • 2黄瑜,李刚,于勇.一类具有非线性迁移项的拟线性抛物方程解的熄灭[J].南京气象学院学报,2004,27(5):695-699. 被引量:3
  • 3陈松林.一类反应扩散方程解的熄灭现象[J].应用数学和力学,2001,22(11):1217-1220. 被引量:10
  • 4Kalashnikov A S.The Nature of the Propagation of Perturbations in Problems of Non-linear Heat Conduction withAbsorption. USSR Comp Math Math Phys . 1974
  • 5Yuan H J,Lian S Z,Gao W Jet al.Extinction and Positive for the Evolution p-Laplacian Equation in RN. NonlAnal,TMA . 2005
  • 6Kalashnikov A.S.On a nonlinear equation appearing in the theory of non-stationary Filtration. Trud.Sem.I G Petrovski . 1978
  • 7Esteban J R,Vazquez J L.On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Analysis . 1982
  • 8EvansLC,KnerrBF.Instantaneousshrinkingofthesupportofnonnegativesolutionstocertainnonlinearparabolicequationsandvariationalinequalities,IllinoisJ. Mathematica Journal . 1979
  • 9A. V. Lair.Finite extinction time for solutions of nonlinear parabolic equations. Nonlinear Analysis . 1993
  • 10Pao CV.Nonlinear parabolic and elliptic equations. . 1992

二级参考文献22

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2蔡日增.一类半线性抛物型方程的解熄灭现象[J].南京大学学报(数学半年刊),1995,12(1):116-120. 被引量:1
  • 3Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics[M].New York: McGraw-Hill, 1974.
  • 4Martison L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law[J]. Magrtitnaya Gidrodinamika, 1971, 2: 50- 58.
  • 5Kalashnikov A S. On a nonlinear equation appearing in the theory of non-stationary filtration[J]. Trudy Sem Petrovsk, 1978, 5: 60"68.
  • 6Bobisud L E. Existence of steady-state solutions for some one-dimensional conduction problems[J]. J Math Anal Appl, 1995, 195: 684- 701.
  • 7Cantrell R S, Cosner C. Diffusive logistic equations with indefinite weights: Population models in disrupted environments II[J]. SIAM J Math Anal, 1991, 22: 1043-1069.
  • 8Aronson D G, Peletier L A. Large time behavior of solutions of the porous nledium equation in bounded domain [J]. J Differential Equations, 1981, 39: 378-412.
  • 9Pao C V. Strongly coupled elliptic systems and application to Lotka- Volterra models with cross-diffusion [J]. Nonlinear Anall, 2005, 60: 1197-1217.
  • 10Pao C V. Asymptotic behavior of solutions for a parabolic equation with nonlinear boundary conditions [J]. Proc Amer Math Soc, 1980, 80: 587- 593.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部