期刊文献+

Bt群体信号应答因子nprR基因的缺失对cry1Ac基因表达的影响 被引量:3

Effect of Quorum Sensing response regulator nprR deletion on expression of Cry protein in Bacillus thuringiensis
原文传递
导出
摘要 【目的】研究群体信号应答蛋白编码基因nprR在苏云金芽胞杆菌(Bacillus thuringiensis,Bt)HD-73菌株晶体蛋白形成过程中的作用。【方法】通过同源重组,构建了HD-73nprR基因缺失突变菌株HD73(ΔnprR)。利用启动子-lacZ融合、SDS-PAGE方法,测定不同培养基中nprR基因转录活性及nprR基因缺失对cry1Ac转录及表达的影响。【结果】启动子转录活性分析表明,在LB和SSM培养基中nprR基因从对数期结束(T0)开始表达,稳定期持续表达。在LB培养基中,nprR基因的缺失使cry1Ac基因在生长过渡期和稳定期前期转录活性显著提高,同时HD73(ΔnprR)菌株Cry蛋白生成量也明显高于出发菌株HD-73,但是在芽胞形成释放后,Cry蛋白的表达没有明显的区别。【结论】在丰富培养基中苏云金芽胞杆菌nprR基因的缺失在生长过渡期和稳定期前期能够提高cry1Ac基因转录和表达,从而缩短了cry基因表达时间,并且Cry蛋白总产量与出发菌株相当。 [ Objective] The role of Quroum Sensing response regulator nprR on the expression of Cry protein in B. thuringiensis HD-73 was studied. [ Methods] The nprR gene deletion mutant HD73 (△nprR) was constructed by using of homologous recombination. Beta-galactosidase assay of crylAc'-lacZ gene fusion and SDS-PAGE in both HD-73 and HD73 (△nprR) strains were performed to analyze the effect of nprR gene deletion on expression of crylAc gene. [ Resultsl Beta- galactosidase assay of nprR'-lacZ in both LB and Schaeffer' s sporulation medium showed nprR gene in B. thuringiensis was initially transcripted at TO (end of Logarithmic growth phase) and keeping expression in stationary phase. Betagalactosidase assay of crylAc'-lacZ and SDS-PAGE indicated that expression of crylAc gene in HD73 (△nprR) was stronger than that in HD-73 during transition phase and early stationary phase. However, Cry expressed product between HD-73 and HD73 (△nprR) in LB medium has no significant difference when crystal and spore were released. [ Conclusion] The deletion of nprR increased expression and transcription activity of crylAc during transition and early stationary phase in rich media.
出处 《微生物学报》 CAS CSCD 北大核心 2010年第11期1550-1555,共6页 Acta Microbiologica Sinica
基金 国家"973项目"(2009CB118902)~~
关键词 苏云金芽胞杆菌 群体效应 nprR基因 CRY1AC基因 Bacillus thuringiensis Quorum Sensing nprR gene crylAc gene
  • 相关文献

参考文献16

  • 1Grossman AD, Losick R. Extracellular control of spore formation in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(2): 4369-4373.
  • 2Burbulys D, Trach, Kathleen A, Hoch JA. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 1991, 64 (2) : 545- 552.
  • 3Fujita M, Losick R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes&Development, 2005, 19: 2236-2244.
  • 4Pottathil M, Lazazzera B A. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Frontiers Bioscience, 2003, 8: 32-45.
  • 5Camilli A, Bassler B L. Bacterial Small-Molecule Signaling Pathways. Science, 2006, 31 ( 24 ) : 1113- 1116.
  • 6Perego M, Hoch J A. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93 (4) : 1549-1553.
  • 7Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. Journal of Bacteriology, 2005, 187(13) : 4353-4361.
  • 8Core L, Perego M. TPR-mediated interaction of RapC with ComA inhibitsresponse regulator-DNA binding for competence development in Bacillus subtilis, Molecular Microbiology, 2003, 49(6) : 1509-1522.
  • 9Lereclus D, Agaisse H, Gominet M, Salamitou S, Sanchis V. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phosphaolipase C gene at the onset of the stationary phase. Journal of Bacteriology, 1996, 178(10) : 2749-2756.
  • 10Angel E, Aceves-Diez. Refugio Robles-Burgue? o. Mayra de la Torte. SKPDT is a signaling peptide that stimulates sporulation and crylAa expression in Bacillus thuringiensisbut not in Bacillus subtilis. Applied Microbiology and Biotechnology, 2007, 76 ( 1 ) : 203- 209.

同被引文献49

  • 1李社增,鹿秀云,马平,高胜国,刘杏忠,刘干.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J].植物病理学报,2005,35(5):451-455. 被引量:85
  • 2Cao Y, Zhang Z, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Bi- ology and Fertility of Soils, 2011,47(5) : 495 -506.
  • 3Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringac is facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134( 1 ) : 307 - 319.
  • 4Fan B, Chen X H, Budiharjo A, et al. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluo- rescent protein. Journal of Biotechnology, 2011, 151 (4): 303 -311.
  • 5吴园园,郭庆港,李社增,等.枯草芽胞杆菌NCD-2菌株生物膜形成条件的优化.郭泽建,李宝笃主编.中国植物病理学会2012年学术年会论文集.北京:中国农业科学技术出版社,2012:382-387.
  • 6Reizer J, Bachem S, Reizer A, et al. Novel phosphotransferase system genes revealed by genome analysis - the complete com- plement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology, 1999, 145 : 3419 - 3429.
  • 7Hamon M A, Lazazzera B A. The sporulation transcription fac- tor Spo0A is required for biofilm development in Bacillus subti- l/s. Molecular Microbiology, 2001, 42(5) : 1199 - 1209.
  • 8Chang S, Cohen S N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Ge- netics, 1979, 168(1): 111- 115.
  • 9Guo Q G, Li S Z, Lu X Y, et al. PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subti- l/s NCD-2. Genetics and Molecular Biology, 2010, 33 ( 3 ) : 333 - 340.
  • 10Driks A. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis. Mo- lecular Microbiology, 2011, 80(5) : 1133 - 1136.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部