摘要
新疆百31断块二叠系佳木河组低孔、低渗复杂断块裂缝性油藏裂缝成因主要受构造、岩性、地层曲率等多种因素控制。通过随机建模技术建立该区裂缝性储层的静态地质模型,利用裂缝孔隙度、裂缝段厚度和油井产能数据建立的裂缝指数曲线描述了裂缝的储集能力及井间裂缝连通信息;使用模糊逻辑技术筛选裂缝的主要控制参数,根据神经网络算法将一系列与裂缝密切相关的岩石物性、地震属性及油气井产能数据有机整合在一起;通过对裂缝规模及分布的定量化模拟手段建立了该区裂缝性储层的预测模型,尤其定量化的裂缝分布方位、分布概率的估值方法及其误差分析技术,在寻找潜在的裂缝发育部位、减少勘探开发风险方面具有较高的参考价值。
With low porosity, low permeability and complex structure, the Permian fractured glutenite reservoir in B31 fault block which is located in the western margin of Junggar Basin is mainly controlled by the structure and lithology as well as formation curvature, etc. The static geomodel of fractured reservoirs is built with stochastic modeling approach for simulation. The author integrates a set of rock matrix properties and fracture-related seismic attributes and production data to simulate a 3D fracture distribution model with fracture indicator, fuzzy logic and neural net techniques. It also shows that the use of quantitative fracture distribution (orientation and probability) estimations, together with their error bars (confidence bounds), is a valuable tool for fracture reservoir characterization and the sweet-spots identification with reduced risks.
出处
《中国石油勘探》
CAS
2010年第5期37-40,47,共5页
China Petroleum Exploration
关键词
裂缝性储层建模
裂缝指数
模糊逻辑
神经网络
裂缝分布概率
fractured reservoir modeling
fracture indicator
fuzzy logic
neural net
fracture distribution probability