期刊文献+

局部自适应非线性图像放大算法 被引量:4

A Locally-Adaptive Nonlinear Image Zooming Algorithm
下载PDF
导出
摘要 已有的基于相关性检测的图像缩放算法所检测的边缘方向较少,并且只考虑了边缘特征的常数相关性,有时难以发掘像素之间所蕴含的关联性.为此,提出一种基于相关性检测的非线性图像放大算法.在检测图像中像素的相关性时,充分考虑像素之间潜在的相关方向;在检测相关性的过程中引入针对图像边缘特征的线性和二次相关性检测,用常数、线性或者二次函数来拟合像素之间的关系,从而更全面地描述像素之间的相关性,即图像的边缘特征,使得图像在放大过程中沿着图像的边缘特征进行,有效地消除了放大图像的模糊问题.实验结果表明,该算法具有良好的局部性,适合于GPU并行实现. Since current image resizing algorithms via correlation detection do not fully consider the correlation directions and only adopt the constant correlation along the detected image edge,they cannot always reveal the potential correlations among the neighboring pixels.An algorithm of non-linearly zooming in an image is proposed,which is based on the correlation detection.The potential correlation directions are fully considered;and constant,linear and quadric correlations along the image edges are detected,which can describe local image edge features better.Experimental results show that the proposed algorithm can alleviate the image blur and accomplish high quality zooming-in effects.Furthermore it is a local algorithm and can be implemented in parallel on GPU.
机构地区 浙江大学CAD
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第11期1849-1855,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60873046,60933007) 国家科技支撑计划(2007BAH11B02)
关键词 相关性 非线性 拟合 图像缩放 correlation nonlinear approximation image resizing
  • 相关文献

参考文献4

二级参考文献22

  • 1胡敏,檀结庆,刘晓平.用二元向量有理插值实现彩色图像缩放的方法[J].计算机辅助设计与图形学学报,2004,16(11):1496-1500. 被引量:11
  • 2刘志军,蔡超,彭晓明,周成平,丁明跃.一种新颖的基于遗传算法的正则化图像插值方法[J].中国图象图形学报(A辑),2004,9(8):934-940. 被引量:3
  • 3崔锦泰.小波分析导论[M].西安:西安交大出版社,1991..
  • 4李岳生 齐东旭.样条函数方法[M].北京:科学出版社,1978.25-57.
  • 5Chuihee Lee,IEEE Trans Image Processing,1998年,7卷,5期,679页
  • 6崔锦泰,小波分析导论,1991年,109页
  • 7Hou Hsiehs,IEEE Trans Acoustics Speech Signal Processing,1978年,26卷,6期,508页
  • 8李岳生,样条函数方法,1978年,25页
  • 9Castleman Kenneth R.Digital image processing[M].Beijing:Tsinghua University Press,1998
  • 10Duan Q,Wang L,Twizell E H.A new C2 rational interpolation based on function values and constrained control of the interpolant curves[J].Applied Mathematics and Computation,2005,161(1):311-322

共引文献150

同被引文献54

  • 1朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 2王强,檀结庆,胡敏.基于有理样条的图像缩放算法[J].计算机辅助设计与图形学学报,2007,19(10):1348-1351. 被引量:20
  • 3Hou H S, Andrews H C. Cubic splines for image interpolation and digital filtering[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1978,26 ( 6) : 508 -517.
  • 4Morse B S, Schwartzwald D. Image magnifycation using level-set reconstruction[C]//Proceedings of IEEE Conference on Comput?er Vision and Pattern Recognition. Kauai, Hawaii, USA: IEEE Press, 2001.
  • 5Kim H, Cha Y, Kim S. Curvature interpolation method for image zooming[J] . IEEE Transactions on Image Processing, 2011, 20(7) :1895-1903.
  • 6Chambolle A. An algorithm for total varition minimization and ap?plications[J] .Journal of Mathematical Imaging and Vision, 2004 ,20( 112) :89-97.
  • 7You Y L, Xu W Y, Tannenbaum A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996,5(11): 1539-1553.
  • 8Perona P, MalikJ. Scale-space and edge detection using an iso?tropic diffusion[J]. IEEE Transactions on Pattern Analysis Ma?chine Intelligent, 1990, 12( 7 ): 629-639.
  • 9You Y L, Kaveh M. Fourth-order partial differential equation for noise removal[J]. IEEE Transactions on Image Processing, 2000,9(10) : 1723-1730.
  • 10Lysaker M, Lundervold A, Tai X C. Noise removal using fourth?order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transac?tions on Image Processing, 2003, 12(12) : 1579-1590.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部