期刊文献+

基于协同进化的多智能体机器人路径规划 被引量:3

Path Planning Research for Multi-Agent Robot Based on Co-Evolution
下载PDF
导出
摘要 协同进化是一种新兴的、简单有效的智能优化方法,具有较好的收敛性、鲁棒性和高效性,在多目标优化问题中得到很广泛应用。将其应用到复杂环境下多智能体机器人的路径规划中,并设计适应度评价函数。同时,引入一系列新的变异操作算子,有效地对多智能体机器人规划的路径进行优化,加速了整体的规划速度,避免规划陷入局部最优,从而获得多智能体系统的全局最优或次优解。最后给出了的仿真结果证明方法可行、有效。 Co-Evolution is a novel,simple and effective Intelligent Optimization approach,has good convergence,robustness and efficiency in multi-objective optimization problem has been very widely used.In this paper,its application to complex environment of multi-robot path planning,and design of the fitness evaluation function.At the same time,the introduction of a new series of operator variability and effective manner to multi-robot path planning,optimization,accelerated the pace of overall planning to avoid a local optimum planning,multi-robot system in order to obtain the global optimal or sub-optimal solution.Finally,the simulation results prove the method is feasible and effective.
出处 《计算机系统应用》 2010年第11期157-161,共5页 Computer Systems & Applications
基金 国家自然科学基金项目(编号:60774023) 湖南省自然科学基金项目(编号:06jj5014) 解放军理工大学理学院青年基金项目(QN-DZ-2009-03)
关键词 多智能体机器人 路径规划 协同进化 遗传算法 multi-agent robot path planning co-evolution genetic algorithm
  • 相关文献

参考文献3

二级参考文献32

共引文献16

同被引文献58

  • 1缪立新,王发平.V2X车联网关键技术研究及应用综述[J].汽车工程学报,2020,10(1):1-12. 被引量:43
  • 2杨明,嘉莉,邱玉辉.基于增强学习的多agent自动协商研究[J].计算机工程与应用,2004,40(33):98-100. 被引量:6
  • 3吴靓,何清华,黄志雄,邹湘伏.基于蚁群算法的多机器人集中协调式路径规划[J].机器人技术与应用,2006(3):32-37. 被引量:6
  • 4赵凛,张星臣.基于Repast平台的城市交通系统仿真建模研究[J].物流技术,2006,25(7):117-119. 被引量:4
  • 5黄翔.空调工程[M].北京:机械工业出版社,2005:428-429.
  • 6Zhang Lin, Zhang Guiqing. Building energy saving design based on multi-agent system [ C ]//2010 5th IEEE Conference on Industrial Electronics and Application. [ s. 1. ] : [ s. n. ], 2010:840-844.
  • 7Malleson N. Agent Based Crime Simulation[ N/OL]. 2008-06. http ://crimesim. blogspot, corn/.
  • 8Davidsson P, Boman M. Distributed monitoring and control of off'ice buildings by embedded agents [ J ]. Information Sci- ences ,2005,171:293-307.
  • 9Davidsson P, Boman M. Saving energy and providing value added services in intelligent buildings :a MAS approach [ C ]// ASA/MA 2000 Proceedings of the Second International Sym- posium on Agent Systems and Applications and Fourth Imer-national Symposium on Mobile Agents. London: Springer-Ver- lag,2003 : 166-177.
  • 10Youk S, Kim M, Kim Y, et al. Improvement of air handling unit control performance using reinforcement learning[ C ]//PKAW 2006,LNAI 4303.[s. 1. ] :[s. n. ] ,2006:168-176.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部